https://www.sciencedirect.com/science/article/pii/S0169433220335388
[2] Hui Jia, Qing-Qiang Kong, Xiao Yang, Li-Jing Xie, Guo-Hua Sun, Lei-Lei Liang, Jing-Peng Chen, Dong Liu, Quan-Gui Guo(*), and Cheng-Meng Chen(*). Dual-functional graphene/carbon nanotubes thick film: bidirectional thermal dissipation and electromagnetic shielding. Carbon, 2021, 171: 329-340.
https://www.sciencedirect.com/science/article/pii/S0008622320308654
[3] Lei-Lei Liang, Zhuo Liu, Li-Jing Xie, Jing-Peng Chen, Hui Jia, Qing-Qiang Kong, Guo-Hua Sun(*), and Cheng-Meng Chen(*). Bamboo-like N-doped Carbon Tubes Encapsulated CoNi Nanospheres towards Efficient and Anticorrosive Microwave Absorbents. Carbon, 2021, 171: 142-153.
https://www.sciencedirect.com/science/article/pii/S000862232030823X
[4] Lei-Lei Liang, Ge Song, Jing-Peng Chen, Zhuo Liu, Hui Jia, Qing-Qiang Kong, Guo-Hua Sun(*), and Cheng-Meng Chen(*). Crystalline-amorphous Ni3P@Nix(POy)z core-shell heterostructures as corrosion-resistant and high-efficiency microwave absorbents. Applied Surface Science, 2021, 542: 148608.
https://www.sciencedirect.com/science/article/pii/S0169433220333663
[5] Zhe-Fan Wang, Zong-Lin Yi, Aziz Ahmad, Li-Jing Xie, Jing-Peng Chen, Qing-Qiang Kong, Fang-Yuan Su(*), Da-Wei Wang(*), and Cheng-Meng Chen(*). Combined DFT and experiment: stabilizing the electrochemical interfaces via boron Lewis acids. Journal of Energy Chemistry, 2021, 59: 100-107.
https://www.sciencedirect.com/science/article/pii/S2095495620307336
[6] Saeed Ullah Jan(#), Aziz Ahmad(#), Adnan Ali Khan, Saad Melhi, Iftikhar Ahmad, Guohua Sun(*), Cheng-Meng Chen(*), and Rashid Ahmad(*). Removal of azo dye from aqueous solution by a low-cost activated carbon prepared from coal: adsorption kinetics, isotherms study, and DFT simulation. Environmental Science and Pollution Research, 2021, 28: 10234-10247.
https://link.springer.com/article/10.1007/s11356-020-11344-4
[7] Jing-Peng Chen, Yi-Feng Du, Zhe-Fan Wang, Lei-Lei Liang, Hui Jia, Zhuo Liu, Li-Jing Xie, Shou-Chun Zhang(*), and Cheng-Meng Chen(*). Anchoring of SiC whiskers on the hollow carbon microspheres inducing interfacial polarization to promote electromagnetic wave attenuation capability. Carbon, 2021, 175: 11-19.
https://www.sciencedirect.com/science/article/pii/S0008622320312501
[8] Hui Jia(#), Xiao Yang(#), Qing-Qiang Kong, Li-Jing Xie, Quan-Gui Guo, Ge Song, Lei-Lei Liang, Jing-Peng Chen, Yan Li, and Cheng-Meng Chen(*). Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultrawideband electromagnetic interference shielding. Journal of Materials Chemistry A, 2021, 9: 1180.
https://pubs.rsc.org/en/content/articlelanding/2021/ta/d0ta09246k#!divAbstract
[9] Yan Li(#), Yi-Feng Du(#), Guo-Hua Sun, Jia-Yao Cheng, Ge Song, Ming-Xin Song, Fang-Yuan Su, Fan Yang(*), Li-Jing Xie(*), and Cheng-Meng Chen(*). Self-standing hard carbon anode derived from hyper-linked nanocellulose with high cycling stability for lithium-ion batteries. EcoMat, 2021, 1-14.
https://onlinelibrary.wiley.com/doi/10.1002/eom2.12091
[10] Yi-Feng Du, Guo-Hua Sun, Yan Li, Jia-Yao Cheng, Ge Song, Qing-Qiang Kong, Li-Jing Xie(*), and Cheng-Meng Chen(*). Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity. Carbon, 2021, 178: 243-255.
https://www.sciencedirect.com/science/article/pii/S0008622321003183
[11] Qing-Qiang Kong, Hui Jia, Li-Jing Xie, Ze-Chao Tao, Xiao Yang, Dong Liu, Guo-Hua Sun, Quan-Gui Guo, Chun-Xiang Lu(*), and Cheng-Meng Chen(*). Ultra-high temperature graphitization of three-dimensional large-sized graphene aerogel for the encapsulation of phase change materials. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106391.
https://www.sciencedirect.com/science/article/pii/S1359835X21001159
[12] Jing-Peng Chen, Ge Song, Zhuo Liu, Li-Jing Xie, Shou-Chun Zhang(*), and Cheng-Meng Chen(*). Design of core-shell nickel oxide/silicon carbide whiskers towards excellent microwave absorption property. Chinese Journal of Chemical Engineering, 2021, https://doi.org/10.1016/j.cjche.2021.03.047.
https://www.sciencedirect.com/science/article/pii/S1004954121002640
[13] Dong Liu, Qing-Qiang Kong, Hui Jia, Li-Jing Xie, Jingpeng Chen, Zechao Tao, Zheng Wang, Dong Jiang(*), and Cheng-Meng Chen(*). Dual-functional 3D multi-wall carbon nanotubes/graphene/Silicone Rubber Elastomer: Thermal Management and Electromagnetic interference shielding. Carbon, 2021, 183: 216-2
https://www.sciencedirect.com/science/article/pii/S0008622321006916
[14] Ge Song(#), Zong-Lin Yi(#), Fang-Yuan Su(*), Li-Jing Xie, and Cheng-Meng Chen(*). New Insights into the Mechanism of LiDFBOP for Improving the Low-Temperature Performance via the Rational Design of an Interphase on a Graphite Anode. ACS Applied Materials &Interfaces,2021, 13: 40042-40052.
https://pubs.acs.org/doi/10.1021/acsami.1c09667
[15] Li-Jing Xie, Cheng Tang, Zhi-Hong Bi, Ming-Xin Song, Ya-Feng Fan, Chong Yan, Xiao-Ming Li, Fangu-Yuan Su, Qiang Zhang, and Cheng-Meng Chen. Hard Carbon Anodes for Next-Generation Li-Ion Batteries: Review and Perspective, Advanced Energy Materials, 2021, 2101650.
https://onlinelibrary.wiley.com/doi/10.1002/aenm.202101650
[16] Ya-Feng Fan, Zong-Lin Yi, Ge Song, Zhe-Fan Wang, Chao-Jie Chen, Li-Jing Xie, Guo-Hua Sun, Fang-Yuan Su(*), and Cheng-Meng Chen(*). Self-standing graphitized hybrid Nanocarbon electrodes towards high-frequency supercapacitors. Carbon, 2021, 185: 630-640.
https://www.sciencedirect.com/science/article/pii/S000862232100960X
[17] Hui Jia, Lei-lei Liang, Dong Liu, Zheng Wang, Zhuo Liu, Li-jing Xie, Ze-chao Tao, Qing-qiang Kong(*), and Cheng-meng Chen(*). A review of three-dimensional graphene networks for thermal management and electromagnetic protection. New Carbon Materials, 2021, 36(5): 851-871.
https://www.sciencedirect.com/science/article/pii/S1872580521600884
[18] Zheng Wang, Qing-Qiang Kong, Zong-Lin Yi, Li-Jing Xie, Hui Jia, Jing-Peng Chen, Dong Liu, Dong Jiang(*), and Cheng-Meng Chen(*). Electromagnetic interference shielding material for super-broadband: multi-walled carbon nanotube/ silver nanowire film with an ultrathin sandwich structure. Journal of Materials Chemistry A, 2021, 9: 25999-26009.
https://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta08106c
[19] Guang-Yu Cui, Zong-Lin Yi, Fang-Yuan Su(*), Cheng-Meng Chen, and Pei-De Han(*). A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials. New Carbon Materials, 2021, 36(6): 1062-1072.
https://www.sciencedirect.com/science/article/pii/S0008622321011659
[20] Hui Jia(#), Zong-Lin Yi(#), Xian-Hong Huang, Fang-Yuan Su, Qing-Qiang Kong, Xiao Yang, Zheng Wang, Li-Jing Xie(*), Quan-Gui Guo(*), and Cheng-Meng Chen(*). A one-step graphene induction strategy enables in-situ controllable growth of silver nanowires for electromagnetic interference shielding. Carbon, 2021, 183: 809-819.
https://www.sciencedirect.com/science/article/pii/S0008622321007454
[21] 孔庆强,黄显虹,王振兵,郭晓倩,谢莉婧,苏方远,孙国华,陈成猛. 超级电容器用活性炭国产化关键化学与化工问题,化工进展,2021, 40(9): 5088-5096.
[22] Jing-Peng Chen(#), Zhe-Fan Wang(#), Zong-Lin Yi(#), Li-Jing Xie, Zhuo Liu, Shou-Chun Zhang(*), and Cheng-Meng Chen(*). SiC whiskers nucleated on rGO and its potential role in thermal conductivity and electronic insulation. Chemical Engineering Journal, 2021, 423: 130181.
https://www.sciencedirect.com/science/article/pii/S1385894721017691
https://www.sciencedirect.com/science/article/pii/S1359835X19304610
[2] Zong-Lin Yi(#), Sang-Yuan Su(#), Li Huo, Guang-Yu Cui, Cai-Li Zhang, Pei-De Han, Nan Dong(*), Cheng-Meng Chen(*). New insights into Li2S2/Li2S adsorption on the graphene bearing singlevacancy: A DFT study, Applied Surface Sciences, 2020, 503: 144446.
https://www.sciencedirect.com/science/article/pii/S0169433219332623
[3] Xiao Yang, Xiao-Ming Li, Qing-Qiang Kong, Zhuo Liu, Jing-Peng Chen, Hui Jia, Yan-Zhen Liu, Li-Jing Xie, Cheng-Meng Chen(*). One-pot ball-milling preparation of graphene/carbon black aqueous inks for highly conductive and flexible printed electronics. Science China Materials, 2020, 63(3): 392-402.
https://.springer.com/article/10.1007/s40843-019-1210-3
[4] Ge Song, Zong-Lin Yi, Li-Jing Xie, Zhi-Hong Bi, Qian Li, Jing-Peng Chen, Qing-Qiang Kong, Cheng-Meng Chen(*). In-situ conversion of Ni2P/rGO from heterogeneous self-assembled NiO/rGO precursor with boosted pseudocapacitive performance. Chinese Chemical Letters, 2020, 31(6): 1392-1397
. https://doi.org/10.1016/j.cclet.2020.03.046.
https://www.sciencedirect.com/science/article/pii/S1001841720301650
[5] Jia-Yao Cheng, Zong-Lin Yi, Zhen-Bing Wang, Feng Li , Na-Na Gong, Aziz Ahmad, Xiao-Qian Guo, Ge Song, Si-Ting Yuan, Cheng-Meng Chen(*).Towards optimized Li-ion storage performance: Insight on the oxygen species evolution of hard carbon by H2 reduction. Electrochimica Acta, 2020, 337: 135736.
https://www.sciencedirect.com/science/article/pii/S0013468620301286
[6] Jing-Peng Chen(#), Hui Jia(#), Zhuo Liu, Qing-Qiang Kong, Zhi-Hui Hou, Li-Jing Xie, Guo-Hua Sun, Shou-Chun Zhang, Cheng-Meng Chen(*). Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon, 2020, 16: 59-68.
https://www.sciencedirect.com/science/article/abs/pii/S0008622320302979
[7] Rashid Iqbala(#), Aziz Ahmadb(#), Li-Juan Mao, Zahid Ali Ghazia, Abolhassan Imani, Chun-XiangLu, Li-JingXie, Saad Melhi, Fang-Yuan Su, Cheng-Meng Chen(*), Lin-Jie Zhia(*), and Zhi-XiangWei(*). A high energy density self-supported and bendable organic electrode for redox supercapacitors with a wide voltage window.Chinese Journal of Polymer Science, 2020, 38: 522-530.
https://.springer.com/article/10.1007/s10118-020-2378-x
[8] Jing-Peng Chen, Ge Song, Zhuo Liu, Qing-Qiang Kong, Shun-Chun Zhang, Cheng-Meng Chen(*). Preparation of SiC whiskers using graphene and rice husk ash and its photocatalytic property. Journal of Alloys and Compounds, 2020, 833: 155072.
https://www.sciencedirect.com/science/article/pii/S0925838820314353
[9] Si-Ting Yuan, Xian-Hong Huang, Hao Wang, Li-Jing Xie, Jia-Yao Cheng, Qing-Qiang Kong, Guo-Hua Sun(*), Cheng-Meng Chen(*). Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance. Journal of Energy Chemistry, 2020, 51: 396–404.
[1] Li Huo, Fang-Yuan Su, Zong-Lin Yi, Guang-Yu Cui, Cai-Li Zhang, Nan Dong, Cheng-Meng Chen(*), Pei-De Han(*). First-principles studies of li nucleation on double-layered defective graphene. ChemElectroChem, 2019, 6: 810-817.
https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201801187
[2] Zhi-Hong Bi, Li Huo, Qing-Qiang Kong, Feng Li, Jing-Peng Chen, Aziz Ahmad, Xian-Xian Wei, Li-Jing Xie(*), Cheng-Meng Chen(*). Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface. ACS Applied Materials & Interfaces, 2019,11(12): 11421-11430
https://pubs.acs.org/doi/abs/10.1021/acsami.8b21903
[3] Li Huo, Fang-Yuan Su, Zong-Lin Yi, Guang-Yu Cui, Cai-Li Zhang, Nan Dong(*), Cheng-Meng Chen(*), Pei-De Han. The inhibition mechanism of lithium dendrite on nitrogen-doped defective graphite: the first principles studies. Journal of the Electrochemical Society, 2019, 166(8): A1603-A1610.
https://iopscience.iop.org/article/10.1149/2.1011908jes
[4] Zhi-Hong Bi, Qing-Qiang Kong, Yu-fang Cao, Guo-Hua Sun, Fang-Yuan Su, Xian-Xian Wei, Xiao-Ming Li, Aziz Ahmad, Li-Jing Xie(*), Cheng-Meng Chen (*). Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 2019, 7: 16028–16045.
https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta04436a
[5] Kang-Ming Zhang, Li-Qin Dai, Li-Jing Xie, Qing-Qiang Kong, Fang-Yuan Su, Zhuo Liu, Jing Shi, Yan-Zhen Liu, Zhi-Wen Chen(*), Cheng-Meng Chen(*). Graphene/carbon black co-modified separator as polysulfides trapper for Li-S batteries. Chemistry Select, 2019, 4(20): 6026-6034.
https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201901075
[6] Feng Li, Li-Jing Xi, Guo-Hua Sun(*), Qing-Qiang Kong, Fang-Yuan Su, Yu-Fang Cao, Jia-Cheng Wei, Aziz Ahmad, Xiang-Yun Guo, Cheng-Meng Chen(*). Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous and Mesoporous Materials, 2019, 279: 293-315.
https://www.sciencedirect.com/science/article/pii/S1387181118306267
[7] Feng Li, Aziz Ahmad, Li-Jing Xie, Guo-Hua Sun(*), Qing-Qiang Kong , Fang-Yuan Su ,Yuan-Yuan Ma, Yu-Guang Chao, Xiang-Yun Guo, Xian-Xian Wei, Cheng-Meng Chen(*). Phosphorus-modified porous carbon aerogel microspheres as high volumetric energy density electrode for supercapacitor. Electrochimica Acta, 2019, 318: 151-160.
https://www.sciencedirect.com/science/article/pii/S0013468619311946
[8] Wen-Ya Zhang, Qing-Qiang Kong, Ze-Chao Tao, Jia-Cheng Wei, Li-Jing Xie, Xiao-Yu Cui(*), Cheng-Meng Chen(*). 3D thermally cross-linked graphene aerogel–enhanced silicone rubber elastomer as thermal interface material. Advanced Materials Interfaces, 2019, 6: 1900147.
https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.201900147
[9] Mao-Qun Li(#), Zhi-Hong Bi(#), Li-Jing Xie, Guo-Hua Sun(*), Zhuo Liu, Qing-Qiang Kong, Xian-Xian Wei, Cheng-Meng Chen(*). From starch to carbon materials: insight into the crossing reaction and its influence on the carbonization process. ACS Sustainable Chemistry & Engineering, 2019, 7: 14796-14804.
https://pubs.acs.org/doi/10.1021/acssuschemeng.9b02821
[10] Aziz Ahmad, Abolhassan Imani, Lij-uan Mao, Rashid Iqbal, Hui Zhang, Zahid Ali Ghazi, Rashid Ahmad, Adnan Ali Khan, Li-Jing Xie, Cheng-Meng Chen(*), Zhong Zhang(*), Zhi-xiang Wei(*). A bifunctional and free-standing organic composite film with high flexibility and good tensile strength for tribological and electrochemical applications. Advanced Materials Technologies, 2019: 1900617.
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900617
[11] Xian-Xian Wei, Bao-yin Cui, Xiao-xiao Wang, Yan-Zhi Cao, Li-Bing Gao, Shao-qing Guo (*), Cheng-Meng Chen(*). Tuning the physico-chemical properties of BiOBr via solvent adjustment: towards an efficient photocatalyst for water treatment. CrystEngComm, 2019, 21: 1750-1757.
https://pubs.rsc.org/en/content/articlehtml/2019/ce/c8ce02072h
[12] Zong-Lin Yi(#), Fang-Yuan Su(#), Guang-Yu Cui, Pei-De Han, Nan Dong(*), Cheng-Meng Chen(*). Computational insights into the interaction between Li2S/Li2S2 and heteroatom-doped graphene materials, Chemistry Select, 2019, 4: 12612-12621.
https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201903523
[13] Jing-Peng Chen, Qing-Qiang Kong, Zhuo Liu, Zhi-Hong Bi, Hui Jia, Ge Song, Li-Jing Xie, Shun-Chun Zhang, Cheng-Meng Chen(*). High yield silicon carbide whiskers from rice husk ash and graphene: growth method and thermodynamics. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19027-19033.
https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.9b04728
[14] Li-Jie Zhang, Xian-Feng Yang, Rong-Sheng Cai, Cheng-Meng Chen, Yan-Zhi Xia, Hua-Wei Zhang, Dong-Jiang Yang, Xiang-Dong Yao. Air cathode of zinc-air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction. Nanoscale, 2019, 11: 826-832.
https://pubs.rsc.org/en/content/articlehtml/2019/nr/c8nr07386d
[15] Rui-Yi Wang, Zhi-Wei Wu(*), Zhi-Kai Li, Zhang-Feng Qin(*), Cheng-Meng Chen, Zhan-Feng Zheng, Guo-Fu Wang, Wei-Bin Fan, Jian-Guo Wang(*). Synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene over graphene oxide: Probing the active species and relating the catalyst structure to performance. Applied Catalysis A: General., 2019,570:15-22.
https://www.sciencedirect.com/science/article/pii/S0926860X18305489
[16] Tian-Qi He, Zhen Wang, Xiao-Ming Li, Yong-Tao Tan, Ying Liu, Ling-Bin Kong, Long Kang, Cheng-Meng Chen, Fen Ran(*). Intercalation structure of vanadium nitride nanoparticles growing on graphene surface toward high negative active material for supercapacitor utilization. Journal of Alloys and Compounds, 2019,781:1054-1058.
https://www.sciencedirect.com/science/article/pii/S0925838818346966
[17] Kashif Javed(*), Andres Krumme, Mihkel Viirsalu, Illia Krasnou, Tiia Plamus, Viktoria Vassiljeva, Elvira Tarasova, Natalja Savest, Arvo Mere, Valdek Miklia, Mati Danilson, Tiit Kaljuvee, Sven Lange, Qing-Chun Yuan, Paul D.Tophamb, Cheng-Meng Chen. A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning. Carbon, 2019, 140: 148-156.
https://www.sciencedirect.com/science/article/pii/S000862231830767X
[1] Feng Li, Li-Jing Xie, Guo-Hua Sun(*), Fang-Yuan Su, Qing-Qiang Kong, Yu-Fang Cao, Xiang-Yun Guo, Cheng-Meng Chen(*). Structural evolution of carbon aerogel microspheres by thermal treatment for high-power supercapacitors. Journal of Energy Chemistry, 2018, 27: 439-446.
https://www.sciencedirect.com/science/article/pii/S2095495617308069
[2] Wei-Ping Ma, Li-Jing Xie, Li-Qin Dai, Guo-Hua Sun(*), Jian-Zhong Chen(*), Fang-Yuan Su, Yu-Fang Cao, Hong Lei, Qing-Qiang Kong, Cheng-Meng Chen(*). Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochimica Acta, 2018, 266: 420-430.
https://www.sciencedirect.com/science/article/pii/S001346861830313X
[3] Fang-Yuan Su, Huo Li, Qing-Qiang Kong, Li-Jing Xie, and Cheng-Meng Chen(*). Theoretical study on the quantum capacitance origin of graphene cathodes in lithium ion capacitors. Catalysts, 2018, 8(10): 444.
https://www.mdpi.com/2073-4344/8/10/444
[4] Yu-Fang Cao, Li-Jing Xie, Guo-Hua Sun, Fang-Yuan Su, Qing-Qiang Kong, Feng Li, Wei-Ping Ma, Jing Shi, Dong Jiang, Chun-Xiang Lu(*), Cheng-Meng Chen(*). Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustainable Energy Fuels, 2018, 2: 455-456.
https://pubs.rsc.org/en/content/articlehtml/2018/se/c7se00481h
[5] Hui-Fang Zhang, Deng-Ji Xiao, Qian Li, Yuan-Yuan Ma, Shu-Xia Yuan, Li-Jing Xie(*), Cheng-Meng Chen(*), Chun-Xiang Lu(*). Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. Journal of Energy Chemistry, 2018, 27: 195-202.
https://www.sciencedirect.com/science/article/pii/S2095495617308586
[6] Yan-Zhen Liu, Yong-Feng Li(*), Shu-Xia Yuan, Shuai Chen, Cong-Wei Wang, Xiao-Ming Li, Fang-Yuan Su, Cheng-Meng Chen(*). Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions. ChemElectroChem, 2018, 5: 3506-3513.
https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201800937
[7] Qian Li, Chun-Xiang Lu(*), Hui-Fang Zhang, Cheng-Meng Chen(*), Li-Jing Xie(*), Yao-Dong Liu, Shu-Xia Yuan, Qing-Qiang Kong, Ke Zheng, Jun-Qing Yin, Beta-Ni(OH)2 nanosheet arrays grown on biomass-ferived hollow carbon microtubes for high-performance asymmetric supercapacitors. Chemelectrochem, 2018, 5(9):1279-1287.
https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201800024
[8] Yu Zhou, Xiao-Yu Cui(*), Jian-Hua Weng, Sai-Yan Shi, Hua Han, Cheng-Meng Chen. Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technology, 2018, 332: 371-380.
https://www.sciencedirect.com/science/article/pii/S003259101830175X
[9] Deng-Ji Xiao, Chun-Xiang Lu(*), Cheng-Meng Chen, Shu-Xia Yuan. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Materials, 2018, 10: 216-222.
https://www.sciencedirect.com/science/article/pii/S2405829717300715
[10] Qian Li, Chun-Xiang Lu(*), Deng-Ji Xiao, Hui-Fang Zhang, Cheng-Meng Chen, Li-Jing Xie(*), Yao-Dong Liu, Shu-Xia Yuan, Qing-Qiang Kong, Ke Zheng, Jun-Qing Yin. β-Ni(OH)2 nanosheet arrays grown on biomass-derived hollow carbon microtubes for high-performance asymmetric supercapacitors. ChemElectroChem, 2018, 5(9): 1279-1287.
https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201800024
[11] Li-Jun Lei, Zhi-Wei Wu(*), Huan Liu, Zhang-Feng Qin(*), Cheng-Meng Chen, Li Luo, Guo-Fu Wang, Wei-Bin Fan, Jian-Guo Wang(*). A facile method for the synthesis of graphene-like 2D metal oxides and their excellent catalytic application in the hydrogenation of nitroarenes. Journal of Materials Chemistry A, 2018, 6: 9948-9961.
https://pubs.rsc.org/en/content/articlehtml/2018/ta/c8ta02338g
[12] Yu Gu, Shuai Chen, Jun Ren, Yi Alec Jia, Cheng-Meng Chen, Sridhar Komarneni, Dongjiang Yang(*), Xiang-Dong Yao(*). Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano, 2018, 12: 245-253.
https://pubs.acs.org/doi/abs/10.1021/acsnano.7b05971
[13] Xian-Yu Chu, Ting Deng, Wei Zhang(*), Dong Wang, Xiao-Fei Liu, Cai Zhang, Ting-Ting Qin, Li-Yun Zhang, Bing-Sen Zhang, Cheng-Meng Chen, Wei-Tao Zheng(*). Architecture of Co-layered double hydroxide nanocages/graphene composite electrode with high electrochemical performance for supercapacitor. Journal of Energy Chemistry, 2018, 27: 507-512.
https://www.sciencedirect.com/science/article/pii/S2095495617308513
[14] Yi-Hui Zou, Guo-Jing Chang, Shuai Chen, Tong-Chao Liu, Yan-Zhi Xia, Cheng-Meng Chen, Dong-Jiang Yang. Alginate/r-GO assisted synthesis of ultrathin LiFePO4 nanosheets with oriented (010) facet and ultralow antisite defect. Chemical Engineering Journal, 2018, 351: 340-347.
https://www.sciencedirect.com/science/article/pii/S1385894718311422
[1] Feng Li, Li-Jing Xie, Guo-Hua Sun(*), Qing-Qiang Kong, Fang-Yuan Su, Hong Lei, Xiang-Yun Guo, Bing-Sen Zhang, Cheng-Meng Chen(*). Regulating pore structure of carbon aerogels by graphene oxide as ‘shape-directing’ agent. Microporous and Mesoporous Materials, 2017, 240: 145-148.
https://www.sciencedirect.com/science/article/pii/S138718111630508X
[2] Feng Li, Li-Jing Xie, Guo-Hua Sun(*), Fang-Yuan Su, Qing-Qiang Kong, Qian Li, Yu-Guang Chao, Xiang-Yun Guo, Cheng-Meng Chen(*). Boosting the specific surface area of hierarchical porous carbon aerogel by multiple roles of the catalyst towards high performance super-capacitors. ChemElectroChem, 2017, 4(12): 3119-3125.
https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201700880
[3] Cheng-Jie Hua, Xiao-Ming Li, Li-Juan Shen, Hong Lei, Xiao-Qian Guo, Zhuo Liu, Qing-Qiang Kong, Li-Jing Xie, Cheng-Meng Chen(*). Influence of co-solvent hydroxyl group number on properties of water-based conductive carbon pastes. Particuology, 2017, 33: 35-41.
https://www.sciencedirect.com/science/article/pii/S1674200117300421
[4] Fang-Yuan Su, Li-Qin Dai, Xiao-Qian Guo, Li-Jing Xie, Guo-Hua Sun, Cheng-Meng Chen(*). Micro-structure evolution and control of lithium-ion battery electrode laminate. Journal of Energy Storage, 2017, 14: 82-93.
https://www.sciencedirect.com/science/article/pii/S2352152X17302542
[5] Ning-Jing Song, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Can-Liang Ma, Qing-Qiang Kong. Effect of annealing temperature on the mechanical properties of flexible graphene films. New Carbon Materials, 2017, 32(3): 221-226.
https://www.sciencedirect.com/science/article/pii/S1872580517601197
[6] Qian Li, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Li-Jing Xie(*), Yao-Dong Liu(*), Ying Li, Qing-Qiang Kong, Hui Wang. NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Storage Mater, 2017, 8: 59-67.
https://www.sciencedirect.com/science/article/pii/S2405829716303567
[7] Qian Li, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Li-Jing Xie, Shu-Xia Yuan. Hydrothermal synthesis of Ni(OH)2/RGO nanocomposites with superior electrochemical performance. New Carbon Materials, 2017, 32(6): 527-534.
http://manu60.magtech.com.cn/xxtcl/CN/article/searchArticle.do
[8] Yong Zhang, Guo-Xin Zhang, Wan-Xi Li, Xiao-Ming Li, Katsumi Uchiyama, Cheng-Meng Chen(*). Enhancing oxygen reduction activity by exposing (111) facets of CoFe2O4 octahedron on graphene. Chemistry Select, 2017, 2:9878-9881.
https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201701892
[9] Yong-Feng Li, Yan-Zhen Liu(*), Yu Liang, Xiao-Hui Guo, Cheng-Meng Chen(*). Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors. Applied Physics A: Materials Sciences & Processing, 2017, 123(9): 566.
https://.springer.com/article/10.1007/s00339-017-1178-9
[10] Chen Jiao, Wei-Ke Zhang(*), Fang-Yuan Su(*), Hong-Yan Yang, Rui-Xiang Liu, Cheng-Meng Chen. Research progress on electrode materials and electrolytes for supercapacitors. New Carbon Materials, 2017, 32(2): 106-115.
http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTCL201702002.htm
[11] Shan-Hui Zhu(*), You-Liang Cen, Miao Yang, Jing Guo, Cheng-Meng Chen, Jian-Guo Wang, Wei-Bin Fan(*). Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation. Applied Catalysis B: Environment, 2017, 211: 89-97.
https://www.sciencedirect.com/science/article/pii/S0926337317303399
[12] Deng-Ji Xiao, Hui-Fang Zhang, Cheng-Meng Chen, Yao-Dong Liu, Shu-Xia Yuan, and Chun-Xiang Lu(*). Interwoven NiCo2O4 nanosheet/carbon-nanotube composites as highly efficient lithium-sulfur cathode hosts. ChemElectroChem, 2017, 4(11): 2959-2965.
https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201700643
[13] Deng-Ji Xiao, Qian Li, Hui-Fang Zhang, Yuan-Yuan Ma, Chun-Xiang Lu(*), Cheng-Meng Chen, Yao-Dong Liu, Shu-Xia Yuan. A sulfur host d on cobalt–graphitic carbon nanocages for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5: 24901-24908.
https://pubs.rsc.org/en/content/articlehtml/2017/ta/c7ta08483h
[14] Yu-Xue Wei, Rui-Min Ding, Cheng-Hua Zhang(*), Bao-Liang Lv, Yi Wang, Cheng-Meng Chen, Xiao-Ping Wang, Jian Xu, Yong Yang, Yong-Wang Li(*).Facile synthesis of self-assembled ultrathin α-Fe(OH)2 nanorod/graphene oxide composites for supercapacitors. Journal of Colloid and Interface Science, 2017, 504: 593-602.
https://www.sciencedirect.com/science/article/pii/S0021979717306483
[15] Xiao-Dong Tian, Xiao Li, Tao Yang, Kai Wang, Hong-Bao Wang, Yan Song(*), Zhan-Jun Liu, Quan-Gui Guo, Cheng-Meng Chen. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor. Electrochimica Acta, 2017, 247: 1060-1071.
https://www.sciencedirect.com/science/article/pii/S0013468617315219
[16] Ya-Nan Su, Shou-Chun Zhang, Xing-Hua Zhang, Zhen-Bo Zhao, Cheng-Meng Chen, and De-Qi Jing(*). Preparation and properties of graphene/carbon fiber/poly(ether ether ketone) composites. New Carbon Materials, 2017, 32(2): 152-159.
http://www.researchgate.net/publication/317757862
[17] Xiao-Yuan Shi, Ting Deng, Bing-Sen Zhang, Wei Zhang(*), Lu Sui, He Yang, Dong Wang, Wen Shi, Cheng-Meng Chen, Wei-Tao Zheng(*). Accessible 3D integrative paper electrode shapes: all-carbon dual-ion batteries with optimum packaging performances. ChemElectroChem, 2017, 4(12): 3238-3243.
https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201700752
[18] Mo Qiao, Cheng Tang, Liviu Cristian Tanase, Cristian Mihail Teodorescu, Cheng-Meng Chen, Qiang Zhang, Maria-Magdalena Titirici(*). Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. Materials Horizons, 2017, 4: 895-899.
https://pubs.rsc.org/en/content/articlehtml/2017/mh/c7mh00298j
[19] Yi-Ming Niu, Bing-Sen Zhang(*), Jing-Jie Luo, Li-Yun Zhang, Cheng-Meng Chen, Dang-Sheng Su(*). Correlation between microstructure evolution of a well-eefined cubic palladium catalyst and selectivity during acetylene hydrogenation. ChemCatChem, 2017, 9: 3435-3439.
https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201700020
[20] Ren-Hou Liu, Feng Li, Cheng-Meng Chen, Quan-Bin Song, Ning Zhao(*), Fu-Kui Xiao(*). Nitrogen-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for polyaromatic hydrocarbon hydrogenation. Catalysis Science & Terchnology, 2017, 7: 1217-1226.
https://pubs.rsc.org/en/content/articlehtml/2017/cy/c7cy00058h
[21] Xiao Li, Yan Song(*), Xiao-Dong Tian, Kai Wang, Quan-Gui Guo, Lang Liu, Cheng-Meng Chen. Preparation and electrochemical properties of NaF-Si-C-RGO hybrids. New Carbon Materials, 2017, 32(4): 304-310.
http://www.cnki.com.cn/Article/CJFDTotal-XTCL201704003.htm
[22] Li-Jun Lei, Zhi-Wei Wu, Rui-Yi Wang, Zhang-Feng Qin, Cheng-Meng Chen, Ye-Qun Liu, Guo-Fu Wang, Wei-Bin Fan, Jian-Guo Wang.Controllable decoration of palladium sub-nanoclusters on reduced graphene oxide with superior catalytic performance in selective oxidation of alcohols. Catalysis Science & Technology, 2017, 23(7): 5650-5661.
https://pubs.rsc.org/en/content/articlelanding/2017/cy/c7cy01732d
[23] Qing-Qing Gu, Guo-Dong Wen, Yu-Xiao Ding, Kuang-Hsu Wu, Cheng-Meng Chen, and Dang-Sheng Su. Reduced graphene oxide: a metal-free catalyst for aerobic oxidative desulfurization. Green Chemistry, 2017, 19: 1175-1181.
https://pubs.rsc.org/en/content/articlehtml/2017/gc/c6gc02894b
[24] Hui-Fang Zhang, Chun-Xiang Lu(*), Cheng-Meng Chen, Li-Jing Xie, Pu-Cha Zhou, Qing-Qiang Kong. 2D layered α-Fe2O3/rGO flexible electrode by facile colloidal electrostatic self-assembly. ChemElectroChem, 2017, 4: 1990-1996.
https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201700253
[1] Li-Jing Xie, Guo-Hua Sun, Fang-Yuan Su, Xiao-Qian Guo, Qing-Qiang Kong, Xiao-Ming Li, Xianhong Huang, Liu Wan, Wen Song, Kai-Xi Li, Chun-Xiang Lv, Cheng-Meng Chen(*). Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. Journal of Materials Chemistry A, 2016, 4: 1637-1646.
https://pubs.rsc.org/en/content/articlehtml/2015/ta/c5ta09043a
[2] Yi-Dan Gao, Qing-Qiang Kong, Zhuo Liu, Xiao-Ming Li, Cheng-Meng Chen(*), Rong Cai. Graphene oxide aerogels constructed using large or small graphene oxide with different electrical, mechanical and adsorbent properties. RSC Advances, 2016, 6: 9851-9856.
https://pubs.rsc.org/en/content/articlehtml/2016/ra/c5ra26922a
[3] Yi-Dan Gao, Yao-Yao Zhang, Yong Zhang, Li-Jing Xie, Xiao-Ming Li, Fang-Yuan Su, Xian-Xian Wei, Zhi-Wei Xu(*), Cheng-Meng Chen(*), Rong Cai. Three-dimensional paper-like graphene work with highly orientated laminar structure as binder-free supercapacitor electrode. Journal of Energy Chemistry, 2016, 25(1): 49-54.
https://www.sciencedirect.com/science/article/pii/S2095495615001291
[4]Qian Li, Qiang Wei, Li-Jing Xie(*), Cheng-Meng Chen(*), Chun-Xiang Lu(*), Fang-Yuan Su, and Pu-Cha Zhou. Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode. RSC Advances., 2016, 6: 46548-46557.
https://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra04998b
[5] Hong Lei, Zhuo Liu, Chong He, Shou-Chun Zhang, Ye-Qun Liu, Cheng-Jie Hua, Xiao-Ming Li, Feng Li, Cheng-Meng Chen(*), Rong Cai. Graphene enhanced low-density polyethylene by pretreatment and melt compounding. RSC Advances, 2016, 6: 101492-101500.
https://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra15702e
[6] Yan-Zhen Liu, Yong-Feng Li(*), Fang-Yuan Su, Li-Jing Xie, Qing-Qiang Kong, Xiao-Ming Li, Jian-Guo Gao, Cheng-Meng Chen(*). Easy one-step synthesis of N-doped graphene for supercapacitors. Energy Storage Materials, 2016, 2: 69-75.
https://www.sciencedirect.com/science/article/pii/S2405829715300295
[7] Yun-Xiao Tong, Xiao-Ming Li, Li-Jing Xie, Fang-Yuan Su(*), Jing-Ping Li, Guo-Hua Sun, Yi-Dan Gao, Nian Zhang, Qiang Wei, Cheng-Meng Chen(*). Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor. Energy Storage Materials, 2016, 3: 140-148.
https://www.sciencedirect.com/science/article/pii/S2405829715300702
[8] Ning-Jing Song, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Can-Laing Ma, Qiang-Qiang Kong, Zhuo Liu, Xian-Xian Wei, Yong-Hong Li. Free standing graphene/SiC films by in-situ carbothermal reaction as thermal shielding materials. Materials and Design, 2016, 109: 227-232.
https://www.sciencedirect.com/science/article/pii/S0264127516309030
[9] Guo-Hua Sun, Fang-Yuan Su, Xiao-Qian Guo, Cheng-Meng Chen(*). Synthesis of mesoporous carbon aerogels d on metal-containing ionic liquid and its application for electrochemical capacitors. J Solid State Electrochem., 2016, 20: 1813-1817.
https://.springer.com/article/10.1007/s10008-016-3170-2
[10] Fang-Yuan Su, Li-Jing Xie, Guo-Hua Sun, Qing-Qiang Kong, Xiao-Ming Li, Zhuo Liu, Cheng-Meng Chen(*). Theoretical research progress on the use of graphene in different electrochemical processes. New Carbon Materials, 2016, 31: 363-377.
http://manu60.magtech.com.cn/xxtcl/EN/article/searchArticle.do
[11] Li-Jing Xie, Guo-Hua Sun, Long-Fei Xie, Xiao-Ming Li, Zhuo Liu, Qing-Qiang Kong, Chun-Xiang Lu, Kai-Xi Li(*), Cheng-Meng Chen(*). A high energy density asymmetric supercapacitor d on a CoNi-layered double hydroxide and activated carbon. New Carbon Materials, 2016, 31(1): 37-45.
http://manu60.magtech.com.cn/xxtcl/EN/article/searchArticle.do
[12] Chen-Yu Chen, Cheng Tang, Hao-Fan Wang, Cheng-Meng Chen(*), Xiao-Yuan Zhang(*), Xia Huang, Qiang Zhang(*). Oxygen reduction reaction on graphene in an electro-fenton system: in situ generation of H2O2 for the oxidation of organic compounds. ChemSusChem, 2016, 9(10): 1194-1199.
https://onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201600030
[13] Xiao Li, Xiao-Dong Tian, Ning Zhao, Kai Wang, Yan Song(*), Quan-Gui Guo, Cheng-Meng Chen, Lang Liu.A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries. New Journal of Chemistry, 2016, 40(10): 8961-8968.
https://pubs.rsc.org/en/content/articlehtml/2016/nj/c6nj01042c
[14] Yu-Zuo Wang, Xu-Yi Shan, Da-Wei Wang(*), Cheng-Meng Chen, Feng Li(*), Hui-Ming Cheng. Electrochemical stability of graphene cathode for high-voltage lithium ion capacitors. Asia-Pacific Journal of Chemical Engineering, 2016, 11(3): 407-414.
https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.2001
[15 Ting-Zhou Zhuang, Jia-Qi Huang(*), Hong-Jie Peng, Lian-Yuan He, Xin-Bing Cheng, Cheng-Meng Chen, Qiang Zhang(*). Rational integration of polypropylene/graphene oxide/nafion as ternary-ed separator to retard the shuttle of polysulfides for lithium–sulfur batteries. Small, 2016, 12(3): 381-389.
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201503133
[16] Xi-Lin She, Qian-Qian Li, Na Ma, Jin Sun, Deng-Wei Jing, Cheng-Meng Chen, Li-Jun Yang, and Dong-Jiang Yang. Creation of Ge?Nx?Cycon?gures in carbon nanotubes: origin of Enhanced electrocatalytic performance for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2016, 8: 10383-10391.
https://pubs.acs.org/doi/abs/10.1021/acsami.6b03260
[17] Bing-Sen Zhang(*), Yi-Ming Niu, Jun-Juan Xu, Xiao-Li Pan, Cheng-Meng Chen, Wen Shi, Marc-Georg Willinger, Robert Schlogl, Dang-Sheng Su(*). Tuning the surface structure of supported PtNixbillic electrocatalysts for the methanol electro-oxidation reaction. Chemical Communications, 2016, 52(50): 3927.
https://pubs.rsc.org/en/content/articlehtml/2016/cc/c5cc08978f
[18] Long Liu, Xian-Feng Yang, Na Ma, Hai-Tao Liu, Yan-Zhi Xia, Cheng-Meng Chen, Dong-Jiang Yang(*), Xiang-Dong Yao(*). Scalable and cost-effective synthesis of highly ef?cient Fe2N-d oxygen reduction catalyst derived from seaweed biomass. Small, 2016, 12(10): 1295-1301.
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201503305
[19] Chang-Yong Zhang, Peng Liang, Xu-Fei Yang, Yong Jiang, Yan-Hong Bian, Cheng-Meng Chen, Xiao-Yuan Zhang, Xia Huang. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosensors and Bioelectronics, 2016, 81: 32–38.
https://www.sciencedirect.com/science/article/pii/S0956566316301580
[20] Guang-Qiang Lv, Hong-Liang Wang, Yong-Xing Yang, Xiao Li, Tian-Sheng Deng, Cheng-Meng Chen, Yu-Lei Zhu, Xiang-Lin Hou(*). Aerobic selective oxidation of 5- hydroxymethyl-furfural over nitrogen-doped graphene materials with 2,2,6,6- tetramethylpiperidin- oxyl as co-catalyst. Catalysis Science & Technology, 2016, 6, 2377-2386.
https://pubs.rsc.org/en/content/articlehtml/2016/cy/c5cy01149c
[21] Jia-Le Shi, Hao-Fan Wang, Xiao-Lin Zhu, Cheng-Meng Chen, Xing Huang, Xiao-Dong Zhang, Bo-Quan Li, Cheng Tang, Qiang Zhang(*). The nanostructure preservation of 3D porous graphene: New insights into the graphitization and surface chemistry of non-stacked double-templated graphene after high-temperature treatment. Carbon, 2016, 103: 36-44.
https://www.sciencedirect.com/science/article/pii/S0008622316301919
[22] Zhe Yuan, Hong-Jie Peng, Ting-Zheng Hou, Jia-Qi Huang, Cheng-Meng Chen, Da-Wei Wang, Xin-Bing Cheng, Fei Wei, Qiang Zhang(*). Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Letters, 2016, 16(1): 519-527.
https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b04166
[23] Rui-Yi Wang, Zhi-Wei Wu, Zhang-Feng Qin(*), Cheng-Meng Chen, Hua-Qing Zhu, Jian-Bing Wu, Gang Chen, Wei-Bin Fan, Jian-Guo Wang(*). Graphene oxide: an effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene. Catalysis Science & Technology, 2016, 6: 993-997.
https://pubs.rsc.org/en/content/articlehtml/2016/cy/c5cy01854d
[24] Guang-Qiang Lv, Hong-Liang Wang, Yong-Xing Yang, Tian-Sheng Deng, Cheng-Meng Chen, Yu-Lei Zhu, Xiang-Lin Hou(*). Direct synthesis of 2,5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst. Green Chemistry, 2016, 18: 2302-2307.
https://pubs.rsc.org/en/content/articlehtml/2016/gc/c5gc02794b
[25] Chun-Song Zhao, Xi Luo, Cheng-Meng Chen, Hui Wu(*). Sandwich electrode designed for high performance lithium-ion battery. Nanoscale, 2016, 8: 9511-9516.
https://pubs.rsc.org/en/content/articlehtml/2016/nr/c5nr09049k
[26] Long Liu, Xian-Feng Yang, Chun-Xiao Lv, Ai-Mei Zhu, Xiao-Yi Zhu, Shao-Jun Guo(*), Cheng-Meng Chen, Dong-Jiang Yang. Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Applied Materials & Interfaces, 2016, 8: 7047?7053.
https://pubs.acs.org/doi/abs/10.1021/acsami.5b12427
[27] Rui Tang, Qin-Bai Yun, Wei Lv, Yan-Bing He(*), Cong-Hui You, Fang-Yuan Su, Lei Ke, Bao-Hua Li, Fei-Yu Kang, Quan-Hong Yang(*). How a very trace amount of graphene additive works for constructing an ef?cient conductive network in LiCoO2-based lithium-ion batteries. Carbon, 2016, 103: 356-362.
https://www.sciencedirect.com/science/article/pii/S0008622316302214
[1] Li-Jing Xie, Fang-Yuan Su, Long-Fei Xie, Xiao-Ming Li, Zhuo Liu, Qing-Qiang Kong, Xiao-Hui Guo, Yao-Yao Zhang, Liu Wan, Kai-Xi Li, Chun-Xiang Lv, Cheng-Meng Chen(*). Self-assembled 3D graphene-d aerogel with Co3O4 nanoparticles as high-performance asymmetric supercapacitor electrode. Chemsuschem, 2015, 8(17): 2917-2926.
https://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201500355
[2] Zhuo Liu, Qing-Qiang Kong, Cheng-Meng Chen(*),Qiang Zhang, Ling Hu, Xiao-Ming Li, Pei-De Han, Rong Cai. From two-dimensional to one-dimensional structures: SiC nano-whiskers derived from graphene via a catalyst-free carbothermal reaction. RSC Advances, 2015, 5(8): 5946-5950.
https://pubs.rsc.org/en/content/articlehtml/2014/ra/c4ra11380b
[3] Yong-Feng Li, Yan-Zhen Liu(*), Wei-Ke Zhang, Chun-Yao Guo, Cheng-Meng Chen(*). Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors. Materials Letters, 2015, 157: 273-276.
https://www.sciencedirect.com/science/article/pii/S0167577X15300240
[4] Yoshitaka Saito(*), Xi Luo, Chun-Song Zhao, Wei Pan, Cheng-Meng Chen, Jiang-Hong Gong, Hidetoshi Matsumoto, Jie Yao, Hui Wu. Filling the gaps between graphene oxide: a general strategy toward nanoed oxides. Advanced Functional Materials, 2015, 25(35): 5683-5690.
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201501358
[5] Chun-Song Zhao, Hong-Peng Gao, Cheng-Meng Chen, Hui Wu(*). Reduction of graphene oxide in Li-ion batteries. Journal of Materials Chemistry A, 2015, 3(36): 18360-18364.
https://pubs.rsc.org/en/content/articlehtml/2015/ta/c5ta05068e
[6] Jia-Qi Huang(*), Ting-Zhou Zhuang, Qiang Zhang(*), Hong-Jie Peng, Cheng-Meng Chen, Fei Wei. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS Nano, 2015, 9(3): 3002-3011.
https://pubs.acs.org/doi/abs/10.1021/nn507178a
[7] Guang-Qiang Lv, Hong-Liang Wang, Yong-Xing Yang, Tian-Sheng Deng, Cheng-Meng Chen, Yu-Lei Zhu, Xiang-Lin Hou(*). Graphene oxide: a convenient l-free carbocatalyst for facilitating aerobic oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran. ACS Catalysis, 2015, 5(9): 5636-5646.
https://pubs.acs.org/doi/abs/10.1021/acscatal.5b01446
[8] Hong-LiangWang, Yin-Xiong Wang, Tian-Sheng Deng, Cheng-Meng Chen, Yu-Lei Zhu, Xiang-Lin Hou(*). Carbocatalyst in biorefinery: Selective etherification of 5- hydroxymethylfurfural to 5,5'(oxy-bis(methylene)bis-2-furfural over graphene oxide. Catalysis Communications, 2015, 59: 127-130.
https://www.sciencedirect.com/science/article/pii/S1566736714004282
[9] Lin Zhu, Hong-Jie Peng, Ji-Yuan Liang, Jia-Qi Huang(*), Cheng-Meng Chen, Xue-Feng Guo, Wan-Cheng Zhu(*), Peng Li, Qiang Zhang(*). Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries. Nano Energy, 2015, 11: 746-755.
https://www.sciencedirect.com/science/article/pii/S2211285514002699
[10] Rui-Yi Wang, Zhi-Wei Wu, Guo-Fu Wang, Zhang-Feng Qin(*),Cheng-Meng Chen, Mei Dong, Hua-Qing Zhu, Wei-Bin Fan, Jian-Guo Wang. Highly active Au-Pd nanoparticles supported on three-dimensional graphene-carbon nanotube hybrid for selective oxidation of methanol to methyl formate. RSC Advances, 2015, 5(56): 44835-44839.
https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra06025g
[11] Gui-Li Tian, Qiang Zhang(*), Meng-Qiang Zhao, Hao-Fan Wang, Cheng-Meng Chen, Fei Wei. Fluidized-bed CVD of unstacked double- templated graphene and its application in supercapacitors. AICHE Journal, 2015, 61(3): 747-755.
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.14710
[12] Ying Liu, Cheng-Meng Chen, Li-Yan Liu, Guo-Rui Zhu, Qing-Qiang Kong, Ran-Xing Hao, Wei Tan(*). Rheological behavior of high concentrated dispersions of graphite oxide. Soft Materials, 2015, 13(3): 167-175.
https://www.tandfonline.com/doi/abs/10.1080/1539445X.2015.1055004
[1] Qing-Qiang Kong, Zhuo Liu, Jian-Guo Gao, Cheng-Meng Chen(*), Qiang Zhang, Guang-Min Zhou, Ze-Chao Tao, Xing-Hua Zhang, Mao-Zhang Wang, Feng Li, Rong Cai. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Advanced Functional Materials, 2014, 24(27): 4222-4228.
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201304144
[2] Yan-Zhen Liu, Cheng-Meng Chen(*), Yong-Feng Li(*), Xiao-Ming Li, Qing-Qiang Kong, Mao-Zhang Wang. Crumpled reduced graphene oxide by flame-induced reduction of graphite oxide for supercapacitive energy storage. Journal of Materials Chemistry A, 2014, 2(16): 5730-5737.
https://pubs.rsc.org/en/content/articlehtml/2014/ta/c3ta15082h
[3] Ning-Jing Song, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Zhuo Liu, Qing-Qiang Kong, Rong Cai. Thermally reduced graphene oxide films as flexible lateral heat spreaders. Journal of Materials Chemistry A, 2014, 2(39): 16563-16568.
https://pubs.rsc.org/en/content/articlehtml/2014/ta/c4ta02693d
[3] Shan-Hui Zhu(*), Cheng-Meng Chen, Yan-Feng Xue, Jian-Bing Wu, Jian-Guo Wang, Wei-Bin Fan(*). Graphene oxide: an efficient acid catalyst for alcoholysis and esterification reactions. ChemCatChem, 2014, 6(11): 3080-3083.
https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201402574
[4] Xian-Xian Wei, Cheng-Meng Chen, Shao-Qing Guo, Fang Guo, Xiao-Ming Li, Xiao-Xiao Wang, Hai-Tao Cui, Liang-Fu Zhao(*), Wen Li. Advanced visible-light-driven photocatalyst BiOBr-TiO2-graphene composite with graphene as a nano-filler. Journal of Materials Chemistry A, 2014, 2(13): 4667-4675.
https://pubs.rsc.org/en/content/articlehtml/2014/ta/c3ta14349j
[5] Xiao-Chen Zhao, Jia Wang, Cheng-Meng Chen, Yan-Qiang Huang, Ai-Qin Wang(*), Tao Zhang. Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst? Chemical Communications, 2014, 50(26): 3439-3442.
https://pubs.rsc.org/en/content/articlehtml/2014/cc/c3cc49634a
[6] Hong-Liang Wang, Qing-Qiang Kong, Ying-Xiong Wang, Tian-Sheng Deng, Cheng-Meng Chen, Xiang-Lin Hou (*), Yu-Lei Zhu (*). Graphene oxide catalyzed dehydration of fructose into 5-Hydroxymethylfurfural with isopropanol as cosolvent. ChemCatChem, 2014, 6(3): 728-732。
https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201301067
[7] Kashif Javed, C. M. A.Galib, Fan Yang, Cheng-Meng Chen, and Chao-Xia Wang (*). A new approach to fabricate graphene electro-conductive networks on natural fibers by ultraviolet curing method. Synthetic ls, 2014, 193: 41-47.
https://www.sciencedirect.com/science/article/pii/S0379677914001106
[8] Shao-Jun Qing, Xiao-Ning Hou, Ya-Jie Liu, Hong-Juan Xi, Xiang Wang, Cheng-Meng Chen, Zhi-Wei Wu, Zhi-Xian Gao(*). A novel supported Cu catalyst with highly dispersed copper nanoparticles and its remarkable catalytic performance in methanol decomposition. RSC Advances, 2014, 4(94): 52008-52011.
https://pubs.rsc.org/en/content/articlehtml/2014/ra/c4ra10101d
[9] Wen-Zhao Gong, Cheng-Meng Chen, Jian-Guo Gao, Qing-Qiang Kong, Mang-Guo Yang, Mao-Zhang Wang, Lang Liu, Yong-Gang Yang(*). Preparation of a Ni/graphene nanocomposite by an electroless plating method. New Carbon Materials, 2014, 29(6): 432-437.
https://www.sciencedirect.com/science/article/pii/S0008622314012366
[10]李永锋,刘燕珍,龚文照,焦蓬,陈成猛,杨永岗,王茂章,王刚.改性石墨烯对酚醛树脂结构和热解性能的影响.炭素技术, 2014, 04: 5-9+19.
http://www.cnki.com.cn/Article/CJFDTotal-TSJS201404003.htm
[11]徐岗领,陈成猛,孔庆强,杨永岗,王茂章(*).石墨烯泡沫的制备及柔性储能应用研究.化工新型材料, 2014, 02: 155-158.
http://www.cnki.com.cn/Article/CJFDTotal-HGXC201402055.htm
[1] Qing-Qiang Kong, Cheng-Meng Chen(*), Qiang Zhang, Xing-Hua Zhang, Mao-Zhang Wang, Rong Cai. Small particles of chemically-reduced graphene with improved electrochemical capacity. Journal of Physical Chemistry C, 2013, 117(30): 15496-15504.
https://pubs.acs.org/doi/abs/10.1021/jp403497u
[2] Sheng-Yun Huang, Gang-Ping Wu(*), Cheng-Meng Chen, Yu Yang, Shou-Chun Zhang, Chun-Xiang Lu(*). Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces. Carbon, 2013, 52: 613-616.
https://www.sciencedirect.com/science/article/pii/S0008622312008135
[3] Xiao-Ning Guo, Xi-Li Tong, Yun-Wei Wang, Cheng-Meng Chen, Guo-Qiang Jin, Xiang-Yun Guo(*). High photoelectrocatalytic performance of a MoS2-SiC hybrid structure for hydrogen evolution reaction, Journal of Materials Chemistry A, 2013, 1(15): 4657-4661.
https://pubs.rsc.org/en/content/articlehtml/2013/ta/c3ta10600d
[4] Sheng-Yun Huang, Gang-Ping Wu, Cheng-Meng Chen, Yu Yang, Shou-Chun Zhang, Chun-Xiag Lu. Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces. Carbon, 2013, 52: 605-620.
https://www.sciencedirect.com/science/article/pii/S0008622312008135
[5] Xiao-Chen Zhao, Qiang Zhang, Bing-Sen Zhang, Cheng-Meng Chen, Jin-Ming Xu, Ai-Qin Wang, Dang-Sheng Su(*), Tao Zhang(*). Decorated resol derived mesoporous carbon: highly ordered microstructure, rich boron incorporation, and excellent electrochemical capacitance. RSC Advances, 2013, 3(11): 3578-3584.
https://pubs.rsc.org/en/content/articlehtml/2012/ra/c2ra22912a
[6] Rui-Yi Wang, Zhi-Wei Wu, Cheng-Meng Chen, Zhang-Feng Qin(*), Hua-Qing Zhu, Guo-Fu Wang, Hao Wang, Cheng-Ming Wu, Wei-Wen Dong, Wei-Bin Fan, and Jian-Guo Wang(*). Graphene-supported Au-Pd billic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate. Chemical Communications, 2013, 49(74): 8250-8252.
https://pubs.rsc.org/en/content/articlehtml/2013/cc/c3cc43948h
[7] Jia-Qi Huang, Xiao-Fei Liu, Qiang Zhang(*), Cheng-Meng Chen, Meng-Qiang Zhao, Shu-Mao Zhang, Wan-Cheng Zhu, Wei-Zhong Qian, Fei Wei. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from-40 to 60 degrees C. Nano Energy, 2013, 2(2): 314-321.
https://www.sciencedirect.com/science/article/pii/S2211285512002054
[8] Li-Jing Xie, Jun-Feng Wu, Cheng-Meng Chen, Chang-Ming Zhang, Liu Wan, Jian-Long Wang, Qing-Qiang Kong, Chun-Xiang Lv, Kai-Xi Li(*), Guo-Hua Sun. A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode. Journal of Power Sources, 2013, 242: 148-156.
https://www.sciencedirect.com/science/article/pii/S0378775313008719