中文  |  English

EN

科研成果首页 >> 科研成果 >> 科研论文

  • 2024+
    [1] Yu-Ze Xing(#), Meng Li(#), Hui Jia, Li-Jing Xie, Dong Liu, Zheng Wang, Ze-Chao Tao, Ye-Long Tong, Qing-Qiang Kong(*), and Cheng-Meng Chen(*). Revealing the essential effect mechanism of carbon nanotubes on the thermal conductivity of graphene film. Journal of Materials Chemistry C, 2024, 12(5):1851-1859.
    https://pubs.rsc.org/fr/content/articlelanding/2024/tc/d3tc03840h
     
    [2] Guang-Xin Zhao, Tian-Qi Xu,  Yue-Min Zhao, Zong-Lin Yi, Li-Jing Xie, Fang-Yuan Su, Zong-Xu Yao, Xue-Jiang Zhao, Jin-Hao Zhang, Wei Xie, Xiao-Ming Li(*), Liang Dong(*), and Cheng-Meng Chen(*). Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries. Energy Storage Materials, 2024, 67: 103282.
    https://www.sciencedirect.com/science/article/pii/S2405829724001090
     
    [3] Zhi-Hong Bi(#), Zong-Lin Yi(#), Liang-Zhu Zhang, Guang-Rui Wang, An-Ping Zhang, Shi-Hao Liao, Qing-He Zhao, Zhang-Quan Peng, Li Song, Yi Wang, Zhi-Wei Zhao, Shi-Qiang Wei, Wen-Guang Zhao, Xiao-Yu Shi, Ming-Run Li, Na Ta, Jin-Xing Mi, Shun-Ning Li, Pratteek Das, Yi Cui, Cheng-Meng Chen(*), Feng Pan(*), and Zhong-Shuai Wu(*).  Ultrathin dense LiF coverage coupled with a near-surface gradient fluorination lattice enables fast-charging long-life 4.6 V LiCoO2. Energy & Environmental Science, 2024, 17: 2765-2775.
    https://pubs.rsc.org/en/content/articlehtml/2024/ee/d3ee03464j
     
    [4] Zhi-Yan Qi, Jing-Peng Chen(*), Zong-Lin Yi, Li-Jing Xie, Yu-Xiu Yu, Fang-Yuan Su, Yan-Nan Zhao, Guo-Hua Sun, Cheng-Meng Chen(*), and Xiao-Ming Li. Light fraction of pitch realizes robust coating on silicon anodes: The inhibition of volume expansion by self-delithiation. Carbon, 2024, 224: 119074.
    https://www.sciencedirect.com/science/article/pii/S0008622324002938
     
    [5] Yi-Lin Wang, Zong-Lin Yi, Li-Jing Xie, Yi-Xuan Mao, Wen-Jun Ji, Zhan-Jun Liu, Xian-Xian Wei, Fang-Yuan Su(*), and Cheng-Meng Chen(*). Releasing free radicals in precursor triggers the formation of closed pores in hard carbon for sodium-ion batteries. Advanced Materials, 2024, 2401249.
    https://onlinelibrary.wiley.com/doi/10.1002/adma.202401249
     
    [6] Xiong-Fei Li, Fang-Yuan Su, Li-Jing Xie, Yan-Ru Tian, Zong-Lin Yi(*), Jia-Yao Cheng(*), and Cheng-Meng Chen(*). Carbon corrosion induced by surface defects accelerates degradation of platinum/graphene catalysts in oxygen reduction reaction. Small, 2024, 2310940.
    https://pubmed.ncbi.nlm.nih.gov/38700049/
     
    [7] Yi Zhou, Yan-Zhen Liu, Ya-Ni Yan, Yong-Feng Li(*), and Cheng-Meng chen(*). Highly dispersed Co nanoparticles confined by mesopore-rich N-doped hollow carbon nanotubes for efficient oxygen reduction reaction and Zn-air battery. Applied Surface Science, 2024, 672: 160783.
    https://www.sciencedirect.com/science/article/pii/S0926337323000292
     
    [8] Yi-Xuan Mao(#), Zong-Lin Yi(#), Li-Jing Xie, Li-Qin Dai, Fang-Yuan Su, Yi-Lin Wang, Wen-Jun Ji, Xian-Xian Wei, Gong-Ling Hui, Yong-Gang Chang, Wei Xie, Guo-Hua Sun(*) , Dong Jiang(*), Cheng-Meng Chen(*). Elimination of hydrogen bonds in cellulose enables high-performance disordered carbon anode in sodium-ion batteries. Energy Storage Materials, https://doi.org/10.1016/j.ensm.2024.103845.
    https://www.sciencedirect.com/science/article/pii/S2405829724006718
     
    [9] Hao-Nan Li, Yan-Zhen Liu(*), Xiang-Ru Zhu, Yong-Feng Li(*), and Cheng-Meng Chen(*). Exploring new fields of supercapacitors by regulating metal ions in MOFs. Energy Storage Materials, 2024, 73: 103859.
    https://www.sciencedirect.com/science/article/pii/S2405829724006858
     
    [10] Ming-Gang Cheng, Li-Jing Xie, Zong-Lin Yi, Yi-Xuan Mao, Fang-Yuan Su, Xian-Xian Wei, Guo-Hua Sun(*), and Cheng-Meng Chen(*). Preparation of Enriched Closed-Pores Hard Carbon for High-Performance Sodium-Ion Batteries by the Poly(vinyl butyral) Template Method. ACS Applied Energy Materials, 2024, 7: 3452-3461.
    https://pubs.acs.org/doi/10.1021/acsaem.4c00331
     
    [11] Zheng Wang, Shi-Bo Li, Xiao Yang, Hao Wang, Li-Jing Xie, Ze-Chao Tao, Qing-Qiang Kong, Shou-Chun Zhang, Hui Jia(*), Dong Jiang(*), and Cheng-Meng Chen(*). Towards wearable multifunctional cellulose nanofiber/silver nanowire/graphene oxide film: Electromagnetic protection, antibacterial, and motion monitoring. Chemical Engineering Journal, 2024, 502: 157751.
    https://www.sciencedirect.com/science/article/pii/S1385894724092428
     
  • 2023+
    [1] Jing-Xue Li, Hui Jia, Shuai-Shuai Ma, Li-Jing Xie, Xian-Xian Wei, Li-Qin Dai, Hong-Liang Wang(*), Fang-Yuan Su(*), and Cheng-Meng Chen(*). Separator Design for High-Performance Supercapacitors: Requirements, Challenges, Strategies, and Prospects. ACS Energy Letters, 2023, 8, 56-78.
    https://pubs.acs.org/doi/10.1021/acsenergylett.2c01853
     
    [2] Ya-Lu Han, Zhe-Fan Wang, Li-Jing Xie, Hao Wang, Zong Lin Yi, Jing-Xue Li, Ge Song, Chong Yan, Fang-Yuan Su(*), and Cheng-Meng Chen(*). Revealing the accelerated reaction kinetic of Ni-rich cathodes by activated carbons for high performance lithium-ion batteries. Carbon, 2023, 203: 445-454.
    https://www.sciencedirect.com/science/article/pii/S0008622322009988
     
    [3] Ge Song(#), Zong-Lin Yi(#), Fang-Yuan Su(*), Li-Jing Xie, Zhen-Bing Wang, Xian-Xian Wei, Guo-Ning Xu(*), and Cheng-Meng Chen(*). Boosting the Low-Temperature Performance for Li-Ion Batteries in LiPF6‑Based Local High-Concentration Electrolyte. ACS Energy Letters. 2023, 8: 1336-1343.
    https://pubs.acs.org/doi/full/10.1021/acsenergylett.2c02903
     
    [4] Zhe-Fan Wang(#), Cheng Tang(#), Qian Sun, Ya-Lu Han, Zhi-Jian Wang, Li-Jing Xie, Shou-Chun Zhang, Fang-Yuan Su(*), and Cheng-Meng Chen(*). Effect of N-doping-derived solvent adsorption on electrochemical double layer structure and performance of porous carbon. Journal of Energy Chemistry, 2023, 80: 120-127.
    https://www.sciencedirect.com/science/article/pii/S2095495623000025
     
    [5] Ran Xu, Zong-Lin Yi, Ming-Xin Song, Jing-Peng Chen, Xian-Xian Wei, Fang-Yuan Su, Li-Qin Dai, Guo-Hua Sun, Fan Yang(*), Li-Jing Xie(*), and Cheng-Meng Chen(*). Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor, Carbon, 2023, 206: 94-104.
    https://www.sciencedirect.com/science/article/pii/S000862232300074X
     
    [6] Qian Sun(#), Zong-Lin Yi(#), Ya-Feng Fan, Li-Jing Xie, Zhe-Fan Wang, Guo-Hua Sun, Zhen-Bing Wang, Xian-Hong Huang, Zhan-Jun Liu, Fang-Yuan Su(*), and Cheng-Meng Chen(*).  Whole landscape of the origin and evolution of gassing in supercapacitors at a high voltage, ACS Appl. Mater. Interfaces, 2023, 15(47): 54386-54396.
    https://pubs.acs.org/doi/10.1021/acsami.3c10948
     
    [7] Qing-Qing Tian, Xiao-Ming Li, Li-Jing Xie, Fang-Yuan Su, Zong-Lin Yi, Liang Dong(*), and Cheng-Meng Chen(*). Insights into the carbonization mechanism of bituminous coal-derived carbon materials for lithium-ion and sodium-ion batteries. New Carbon Materials, 2023, 38(5): 939-953.
    https://www.sciencedirect.com/science/article/pii/S1872580523607590
     
    [8] Qian-Lei Liu, Li-Qin Dai(*), Li-Jing Xie, Zong-Lin Yi, Ming-Xin Song, Ya-Feng Fan, Guo-Hua Sun, Fang-Yuan Su, and Cheng-Meng Chen(*). Utilizing the capacity below 0 V to maximize lithium storage of hard carbon anodes. Particuology, 2023, 83: 169-177.
    https://www.world-energy.org/article/31060.html
     
    [9] Yu-Ze Xing, Hui Jia, Zhe-Fan Wang, Li-Jing Xie, Dong Liu, Zheng Wang, Meng Li, and Qing-Qiang Kong(*). Vacuum-filtration-assisted ice-templated freeze drying for preparing capacitive graphene aerogel for thermal management. Crystals, 2023, 13: 458.
    https://www.mdpi.com/2073-4352/13/3/458
     
    [10] Xiao-Yang Jia, Zong-Lin Yi, Ran Xu, Wang-Gang Zhang, Ai-Li Wei, Li-Jing Xie, Guo-Hua Sun, Yi-Ming Liu(*), and Cheng-Meng Chen(*). Mechanistic insights into dual function of graphene oxide in preparing Starch-derived amorphous carbon for lithium storage. Applied Surface Science, 2023, 629: 157371.
    https://www.sciencedirect.com/science/article/pii/S0169433223010498
     
     
     
  • 2022+
    [1] Ming-Xin Song, Li-Jing Xie, Jia-Yao Cheng, Zong-Lin Yi, Ge Song, Xiao-Yang Jia, Jing-Peng Chen, Quan-Gui Guo, and Cheng-Meng Chen(*). Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries. Journal of Energy Chemistry, 2022, 66: 448-458.
    https://www.sciencedirect.com/science/article/pii/S2095495621004733

    [2] Hao Wang, Zong-Lin Yi, Fang-Yuan Su, Ge Song, Li-Jing Xie, Zhen-Bing Wang(*), and Cheng-Meng Chen(*). The effect of removing the native passivation film on the electrochemical performance of lithium metal electrodes. Journal of Power Sources, 2022, 520: 230817.
    https://www.sciencedirect.com/science/article/pii/S0378775321013082

    [3] Jing-Xue Li, Li-Qin Dai, Zhe-Fan Wang, Hao Wang, Li-Jing Xie, Jing-Peng Chen, Chong Yan, Hong Yuan, Hong-Liang Wang(*), and Cheng-Meng Chen(*). Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 67: 736–744.
    https://www.sciencedirect.com/science/article/pii/S2095495621006215
     
    [4] Xiao-Ming Li(#), Yi-Dan Gao(#), Qing-Qiang Kong, Li-Jing Xie, Zhuo Liu, Xiao-Qian Guo, Yan-Zhen Liu, Xian-Xian Wei, Xiao Yang, Xing-Hua Zhang, and Cheng-Meng Chen(*). Fabrication of Three-Dimensional Copper@Graphene Phase Change Composite with High Structural Stability and Low Leakage Rate. Acta Phys. -Chim. Sin., 2022, 38(1): 2012091.
    https://www.researchgate.net/publication/350093255_Fabrication_of_Three-  Dimensional_CopperGraphene_Phase_Change_Composite_with_High_Structural_Stability_and_Low_Leakage_Rate

    [5] Zong-Lin Yi(*), Fang-Yuan Su, Li-Qin Dai, Zhen-Bing Wang, Li-Jing Xie, Zhi-Jun Zuo, Xiang Chen, Yao-Dong Liu, and Cheng-Meng Chen(*). Uncovering Electrocatalytic Conversion Mechanisms from Li2S2 to Li2S: Generalization of Computational Hydrogen Electrode. Energy Storage Materials, 2022, 47: 327-335.
    https://www.sciencedirect.com/science/article/pii/S2405829722000721

    [6] 贾辉,孔庆强(*),李文斌,毛昳萱,陈景鹏,郭晓倩,陈成猛(*). 石墨烯衍生物在含能材料中的应用研究进展. 固体火箭技术,2022, 45(1): 26-35.
    https://www.cnki.com.cn/Article/CJFDTotal-GTHJ202201004.htm

    [7] Zhi-Yan Qi, Li-Qin Dai, Zhe-FanWang, Li-Jing Xie, Jing-Peng Chen, Jia-Yao Cheng, Ge Song, Xiao-Ming Li, Guo-Hua Sun, and Cheng-Meng Chen(*). Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery. New Carbon Materials, 2022, 37(1): 245-258.
    https://www.sciencedirect.com/science/article/pii/S1872580522605808

    [8] Li-Jing Xie(#), Cheng Tang(#), Ming-Xin Song, Xiao-Qian Guo, Xiao-Ming Li, Jing-Xue Li, Chong Yan, Qing-Qiang Kong, Guo-Hua Sun, Qiang Zhang(*), Fang-Yuan Su(*), and Cheng-Meng Chen(*). Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: A review. Journal of Energy Chemistry, 2022, 72: 554–569.
    https://www.sciencedirect.com/science/article/pii/S2095495622002583

    [9] Ming-Xin Song, Zong-Lin Yi, Ran Xu, Jing-Peng Chen, Jia-Yao Cheng, Zhe-Fan Wang, Qian-Lei Liu, Quan-Gui Guo, Li-Jing Xie(*), Cheng-Meng Chen(*). Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction. Energy Storage Materials, 2022, 51: 620-629.
    https://www.sciencedirect.com/science/article/pii/S2405829722003774

    [10] Zhe-Fan Wang(#), Zong-Lin Yi(#), Song-Chen Yu, Ya-Feng Fan, Jing-Xue Li, Li-Jing Xie, Shou-Chun Zhang, Fang-Yuan Su(*), and Cheng-Meng Chen(*). High-Voltage Redox Mediator of an Organic Electrolyte for Supercapacitors by Lewis Base Electrocatalysis. ACS Appl. Mater. Interfaces, 2022, 14: 24497-24508.
    https://pubs.acs.org/doi/10.1021/acsami.2c05645

    [11] Zong-Lin Yi, Fang-Yuan Su(*), Zhe-Fan Wang, Ya-Feng Fan, Zhen-Bing Wang, Li-Jing Xie, Yao-Dong Liu, and Cheng-Meng Chen(*). A universal approach for predicting electrolyte decomposition in carbon materials: On the basis of thermodynamics. Energy Storage Materials, 2022, 53: 946-957.
    https://www.sciencedirect.com/science/article/pii/S2405829722005438



     
  • 2021+
    [1] Zhi-Hui Hou(#), Jing-Peng Chen(#), Li-Jing Xie, Xian-Xian Wei(*), Shao-Qing Guo(*), and Cheng-Meng Chen(*). Design of BiOBr Nanosheets Decorated SiC Whisker Hybrid Structure with Enhanced Photocatalytic Performance. Applied Surface Science, 2021, 543, 148779.

    https://www.sciencedirect.com/science/article/pii/S0169433220335388

     

    [2] Hui Jia, Qing-Qiang Kong, Xiao Yang, Li-Jing Xie, Guo-Hua Sun, Lei-Lei Liang, Jing-Peng Chen, Dong Liu, Quan-Gui Guo(*), and Cheng-Meng Chen(*). Dual-functional graphene/carbon nanotubes thick film: bidirectional thermal dissipation and electromagnetic shielding. Carbon, 2021, 171: 329-340.

    https://www.sciencedirect.com/science/article/pii/S0008622320308654

     

    [3] Lei-Lei Liang, Zhuo Liu, Li-Jing Xie, Jing-Peng Chen, Hui Jia, Qing-Qiang Kong, Guo-Hua Sun(*), and Cheng-Meng Chen(*). Bamboo-like N-doped Carbon Tubes Encapsulated CoNi Nanospheres towards Efficient and Anticorrosive Microwave Absorbents. Carbon, 2021, 171: 142-153.

    https://www.sciencedirect.com/science/article/pii/S000862232030823X

     

    [4] Lei-Lei Liang, Ge Song, Jing-Peng Chen, Zhuo Liu, Hui Jia, Qing-Qiang Kong, Guo-Hua Sun(*), and Cheng-Meng Chen(*). Crystalline-amorphous Ni3P@Nix(POy)z core-shell heterostructures as corrosion-resistant and high-efficiency microwave absorbents. Applied Surface Science, 2021, 542: 148608.

    https://www.sciencedirect.com/science/article/pii/S0169433220333663

     

    [5] Zhe-Fan Wang, Zong-Lin Yi, Aziz Ahmad, Li-Jing Xie, Jing-Peng Chen, Qing-Qiang Kong, Fang-Yuan Su(*), Da-Wei Wang(*), and Cheng-Meng Chen(*). Combined DFT and experiment: stabilizing the electrochemical interfaces via boron Lewis acids. Journal of Energy Chemistry, 2021, 59: 100-107.

    https://www.sciencedirect.com/science/article/pii/S2095495620307336 

     

    [6] Saeed Ullah Jan(#), Aziz Ahmad(#), Adnan Ali Khan, Saad Melhi, Iftikhar Ahmad, Guohua Sun(*), Cheng-Meng Chen(*), and Rashid Ahmad(*). Removal of azo dye from aqueous solution by a low-cost activated carbon prepared from coal: adsorption kinetics, isotherms study, and DFT simulation. Environmental Science and Pollution Research, 2021, 28: 10234-10247.

    https://link.springer.com/article/10.1007/s11356-020-11344-4

     

    [7] Jing-Peng Chen, Yi-Feng Du, Zhe-Fan Wang, Lei-Lei Liang, Hui Jia, Zhuo Liu, Li-Jing Xie, Shou-Chun Zhang(*), and Cheng-Meng Chen(*). Anchoring of SiC whiskers on the hollow carbon microspheres inducing interfacial polarization to promote electromagnetic wave attenuation capability. Carbon, 2021, 175: 11-19.

    https://www.sciencedirect.com/science/article/pii/S0008622320312501

     

    [8] Hui Jia(#), Xiao Yang(#), Qing-Qiang Kong, Li-Jing Xie, Quan-Gui Guo, Ge Song, Lei-Lei Liang, Jing-Peng Chen, Yan Li, and Cheng-Meng Chen(*). Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultrawideband electromagnetic interference shielding. Journal of Materials Chemistry A, 2021, 9: 1180.

    https://pubs.rsc.org/en/content/articlelanding/2021/ta/d0ta09246k#!divAbstract

     

    [9] Yan Li(#), Yi-Feng Du(#), Guo-Hua Sun, Jia-Yao Cheng, Ge Song, Ming-Xin Song, Fang-Yuan Su, Fan Yang(*), Li-Jing Xie(*), and Cheng-Meng Chen(*). Self-standing hard carbon anode derived from hyper-linked nanocellulose with high cycling stability for lithium-ion batteries. EcoMat, 2021, 1-14.

    https://onlinelibrary.wiley.com/doi/10.1002/eom2.12091

     

      [10] Yi-Feng Du, Guo-Hua Sun, Yan Li, Jia-Yao Cheng, Ge Song, Qing-Qiang Kong, Li-Jing Xie(*), and Cheng-Meng Chen(*). Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity. Carbon, 2021, 178: 243-255.

    https://www.sciencedirect.com/science/article/pii/S0008622321003183

     

      [11] Qing-Qiang Kong, Hui Jia, Li-Jing Xie, Ze-Chao Tao, Xiao Yang, Dong Liu, Guo-Hua Sun, Quan-Gui Guo, Chun-Xiang Lu(*), and Cheng-Meng Chen(*). Ultra-high temperature graphitization of three-dimensional large-sized graphene aerogel for the encapsulation of phase change materials. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106391.

    https://www.sciencedirect.com/science/article/pii/S1359835X21001159

     

      [12] Jing-Peng Chen, Ge Song, Zhuo Liu, Li-Jing Xie, Shou-Chun Zhang(*), and Cheng-Meng Chen(*). Design of core-shell nickel oxide/silicon carbide whiskers towards excellent microwave absorption property. Chinese Journal of Chemical Engineering, 2021, https://doi.org/10.1016/j.cjche.2021.03.047. 

    https://www.sciencedirect.com/science/article/pii/S1004954121002640

     

      [13] Dong Liu, Qing-Qiang Kong, Hui Jia, Li-Jing Xie, Jingpeng Chen, Zechao Tao, Zheng Wang, Dong Jiang(*), and Cheng-Meng Chen(*). Dual-functional 3D multi-wall carbon nanotubes/graphene/Silicone Rubber Elastomer: Thermal Management and Electromagnetic interference shielding. Carbon, 2021, 183: 216-2

    https://www.sciencedirect.com/science/article/pii/S0008622321006916

     

      [14] Ge Song(#), Zong-Lin Yi(#), Fang-Yuan Su(*), Li-Jing Xie, and Cheng-Meng Chen(*). New Insights into the Mechanism of LiDFBOP for Improving the Low-Temperature Performance via the Rational Design of an Interphase on a Graphite Anode. ACS Applied Materials &Interfaces,2021, 13: 40042-40052.

    https://pubs.acs.org/doi/10.1021/acsami.1c09667

     

      [15] Li-Jing Xie, Cheng Tang, Zhi-Hong Bi, Ming-Xin Song, Ya-Feng Fan, Chong Yan, Xiao-Ming Li, Fangu-Yuan Su, Qiang Zhang, and Cheng-Meng Chen. Hard Carbon Anodes for Next-Generation Li-Ion Batteries: Review and Perspective, Advanced Energy Materials, 2021, 2101650.

    https://onlinelibrary.wiley.com/doi/10.1002/aenm.202101650

     

      [16] Ya-Feng Fan, Zong-Lin Yi, Ge Song, Zhe-Fan Wang, Chao-Jie Chen, Li-Jing Xie, Guo-Hua Sun, Fang-Yuan Su(*), and Cheng-Meng Chen(*). Self-standing graphitized hybrid Nanocarbon electrodes towards high-frequency supercapacitors. Carbon, 2021, 185: 630-640.

    https://www.sciencedirect.com/science/article/pii/S000862232100960X

     

      [17] Hui Jia, Lei-lei Liang, Dong Liu, Zheng Wang, Zhuo Liu, Li-jing Xie, Ze-chao Tao, Qing-qiang Kong(*), and Cheng-meng Chen(*). A review of three-dimensional graphene networks for thermal management and electromagnetic protection. New Carbon Materials, 2021, 36(5): 851-871.

    https://www.sciencedirect.com/science/article/pii/S1872580521600884

     

      [18] Zheng Wang, Qing-Qiang Kong, Zong-Lin Yi, Li-Jing Xie, Hui Jia, Jing-Peng Chen, Dong Liu, Dong Jiang(*), and Cheng-Meng Chen(*). Electromagnetic interference shielding material for super-broadband: multi-walled carbon nanotube/ silver nanowire film with an ultrathin sandwich structure. Journal of Materials Chemistry A, 2021, 9: 25999-26009.

    https://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta08106c

     

      [19] Guang-Yu Cui, Zong-Lin Yi, Fang-Yuan Su(*), Cheng-Meng Chen, and Pei-De Han(*). A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials. New Carbon Materials, 2021, 36(6): 1062-1072.

    https://www.sciencedirect.com/science/article/pii/S0008622321011659

     

      [20] Hui Jia(#), Zong-Lin Yi(#), Xian-Hong Huang, Fang-Yuan Su, Qing-Qiang Kong, Xiao Yang, Zheng Wang, Li-Jing Xie(*), Quan-Gui Guo(*), and Cheng-Meng Chen(*). A one-step graphene induction strategy enables in-situ controllable growth of silver nanowires for electromagnetic interference shielding. Carbon, 2021, 183: 809-819.

    https://www.sciencedirect.com/science/article/pii/S0008622321007454

     

      [21] 孔庆强,黄显虹,王振兵,郭晓倩,谢莉婧,苏方远,孙国华,陈成猛. 超级电容器用活性炭国产化关键化学与化工问题,化工进展,2021, 40(9): 5088-5096.

    https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=HGJZ202109033&uniplatform=NZKPT&v=F9EOajhkPuGBXGfPLYFIafSzz8F_uItZN-m9TSW2rvz8JgvuJnw3s8vYbhZaTFzP

     

      [22] Jing-Peng Chen(#), Zhe-Fan Wang(#), Zong-Lin Yi(#), Li-Jing Xie, Zhuo Liu, Shou-Chun Zhang(*), and Cheng-Meng Chen(*). SiC whiskers nucleated on rGO and its potential role in thermal conductivity and electronic insulation. Chemical Engineering Journal, 2021, 423: 130181.

    https://www.sciencedirect.com/science/article/pii/S1385894721017691

     

     

     

     

  • 2020+
    [1] Hui Jia, Qing-Qiang Kong, Zhuo Liu, Xian-Xian Wei, Xiao-Ming Li, Jing-Peng Chen, Feng Li, Xiao Yang, Guo-Hua Sun(*),  Cheng-Meng Chen(*). 3D graphene/carbon nanotubes/polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105712.

    https://www.sciencedirect.com/science/article/pii/S1359835X19304610

     

    [2] Zong-Lin Yi(#), Sang-Yuan Su(#), Li Huo, Guang-Yu Cui, Cai-Li Zhang, Pei-De Han, Nan Dong(*),  Cheng-Meng Chen(*). New insights into Li2S2/Li2S adsorption on the graphene bearing singlevacancy: A DFT study, Applied Surface Sciences, 2020, 503: 144446.

    https://www.sciencedirect.com/science/article/pii/S0169433219332623

     

    [3] Xiao Yang, Xiao-Ming Li, Qing-Qiang Kong, Zhuo Liu, Jing-Peng Chen, Hui Jia, Yan-Zhen Liu, Li-Jing Xie,  Cheng-Meng Chen(*). One-pot ball-milling preparation of graphene/carbon black aqueous inks for highly conductive and flexible printed electronics. Science China Materials, 2020, 63(3): 392-402.

    https://.springer.com/article/10.1007/s40843-019-1210-3

     

    [4] Ge Song, Zong-Lin Yi, Li-Jing Xie, Zhi-Hong Bi, Qian Li, Jing-Peng Chen, Qing-Qiang Kong,  Cheng-Meng Chen(*). In-situ conversion of Ni2P/rGO from heterogeneous self-assembled NiO/rGO precursor with boosted pseudocapacitive performance. Chinese Chemical Letters, 2020, 31(6): 1392-1397

    . https://doi.org/10.1016/j.cclet.2020.03.046.

    https://www.sciencedirect.com/science/article/pii/S1001841720301650

     

    [5] Jia-Yao Cheng, Zong-Lin Yi, Zhen-Bing Wang, Feng Li , Na-Na Gong, Aziz Ahmad, Xiao-Qian Guo, Ge Song, Si-Ting Yuan, Cheng-Meng Chen(*).Towards optimized Li-ion storage performance: Insight on the oxygen species evolution of hard carbon by H2 reduction. Electrochimica Acta, 2020, 337: 135736.

    https://www.sciencedirect.com/science/article/pii/S0013468620301286

     

     

    [6] Jing-Peng Chen(#), Hui Jia(#), Zhuo Liu, Qing-Qiang Kong, Zhi-Hui Hou, Li-Jing Xie, Guo-Hua Sun, Shou-Chun Zhang, Cheng-Meng Chen(*). Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon, 2020, 16: 59-68.

    https://www.sciencedirect.com/science/article/abs/pii/S0008622320302979


    [7] Rashid Iqbala(#), Aziz Ahmadb(#), Li-Juan Mao, Zahid Ali Ghazia, Abolhassan Imani, Chun-XiangLu, Li-JingXie, Saad Melhi, Fang-Yuan Su, Cheng-Meng Chen(*), Lin-Jie Zhia(*), and Zhi-XiangWei(*). A high energy density self-supported and bendable organic electrode for redox supercapacitors with a wide voltage window.Chinese Journal of Polymer Science, 2020, 38: 522-530.

    https://.springer.com/article/10.1007/s10118-020-2378-x


    [8] Jing-Peng Chen, Ge Song, Zhuo Liu, Qing-Qiang Kong, Shun-Chun Zhang, Cheng-Meng Chen(*). Preparation of SiC whiskers using graphene and rice husk ash and its photocatalytic property. Journal of Alloys and Compounds, 2020, 833: 155072.

    https://www.sciencedirect.com/science/article/pii/S0925838820314353


    [9] Si-Ting Yuan, Xian-Hong Huang, Hao Wang, Li-Jing Xie, Jia-Yao Cheng, Qing-Qiang Kong, Guo-Hua Sun(*), Cheng-Meng Chen(*). Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance. Journal of Energy Chemistry, 2020, 51: 396–404.

     
    [10] Li-Jing Xie, Fang-Yuan Su, Long-Fei Xie, Xiao-Qian Guo, Zhen-Bing Wang, Qing-Qiang Kong, Guo-Hua Sun, Aziz Ahmad, Xiao-Ming Li, Zong-Lin Yi, and Cheng-Meng Chen(*). Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Materials Chemistry Frontiers, 2020, 4: 2610-2634.
     
    [11] Lei-Lei Liang, Ge Song, Zhuo Liu, Jing-Peng Chen, Li-Jing Xie, Hui Jia, Qing-Qiang Kong, Guo-Hua Sun(*), and Cheng-Meng Chen(*). Constructing Ni12P5/Ni2P Heterostructures to Boost Interfacial Polarization for Enhanced Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2020, 12: 52208-52220.
     
    [12] Fang-Yuan Su(#), Zong-Lin Yi(#), Li-Jing Xie, Li-Qin Dai, Nan Dong, Chen Zhang, Guo-Wei Ling(*), Pei-De Han(*), and Cheng-Meng Chen(*).Critical Role of Surface Defects in the Controllable Deposition of Li2S on Graphene: From Molecule to Crystallite. ACS Applied Materials & Interfaces, 2020, 12: 53435-53445.
     
    [13] 李茂群, 陈成猛(*), 孙国华(*), 谢莉婧. 环氧氯丙烷对淀粉热解行为的影响及其交联机理. 新型炭材料, 2020, 35(04): 452-458.
     
     
     
  • 2019+

    [1] Li Huo, Fang-Yuan Su, Zong-Lin Yi, Guang-Yu Cui, Cai-Li Zhang, Nan Dong, Cheng-Meng Chen(*),  Pei-De Han(*). First-principles studies of li nucleation on double-layered defective graphene. ChemElectroChem, 2019, 6: 810-817.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201801187

     

    [2] Zhi-Hong Bi, Li Huo, Qing-Qiang Kong, Feng Li, Jing-Peng Chen, Aziz Ahmad, Xian-Xian Wei, Li-Jing Xie(*),  Cheng-Meng Chen(*). Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface. ACS Applied Materials & Interfaces, 2019,11(12): 11421-11430

    https://pubs.acs.org/doi/abs/10.1021/acsami.8b21903

     

     

    [3] Li Huo, Fang-Yuan Su, Zong-Lin Yi, Guang-Yu Cui, Cai-Li Zhang, Nan Dong(*), Cheng-Meng Chen(*), Pei-De Han. The inhibition mechanism of lithium dendrite on nitrogen-doped defective graphite: the first principles studies. Journal of the Electrochemical Society, 2019, 166(8): A1603-A1610.

    https://iopscience.iop.org/article/10.1149/2.1011908jes

     

    [4] Zhi-Hong Bi, Qing-Qiang Kong, Yu-fang Cao, Guo-Hua Sun, Fang-Yuan Su, Xian-Xian Wei, Xiao-Ming Li, Aziz Ahmad,  Li-Jing Xie(*), Cheng-Meng Chen (*). Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 2019, 7: 16028–16045.

    https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta04436a

     

    [5] Kang-Ming Zhang, Li-Qin Dai, Li-Jing Xie, Qing-Qiang Kong, Fang-Yuan Su, Zhuo Liu, Jing Shi, Yan-Zhen Liu, Zhi-Wen Chen(*), Cheng-Meng Chen(*). Graphene/carbon black co-modified separator as polysulfides trapper for Li-S batteries. Chemistry Select, 2019, 4(20): 6026-6034.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201901075

     

    [6] Feng Li, Li-Jing Xi, Guo-Hua Sun(*), Qing-Qiang Kong, Fang-Yuan Su, Yu-Fang Cao, Jia-Cheng Wei, Aziz Ahmad, Xiang-Yun Guo, Cheng-Meng Chen(*). Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous and Mesoporous Materials, 2019, 279: 293-315.

    https://www.sciencedirect.com/science/article/pii/S1387181118306267

     

    [7] Feng Li, Aziz Ahmad, Li-Jing Xie, Guo-Hua Sun(*), Qing-Qiang Kong , Fang-Yuan Su ,Yuan-Yuan Ma, Yu-Guang Chao, Xiang-Yun Guo, Xian-Xian Wei, Cheng-Meng Chen(*). Phosphorus-modified porous carbon aerogel microspheres as high volumetric energy density electrode for supercapacitor. Electrochimica Acta, 2019, 318: 151-160.

    https://www.sciencedirect.com/science/article/pii/S0013468619311946

     

    [8] Wen-Ya Zhang, Qing-Qiang Kong, Ze-Chao Tao, Jia-Cheng Wei, Li-Jing Xie, Xiao-Yu Cui(*), Cheng-Meng Chen(*). 3D thermally cross-linked graphene aerogel–enhanced silicone rubber elastomer as thermal interface material. Advanced Materials Interfaces, 2019, 6: 1900147.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.201900147

     

    [9] Mao-Qun Li(#), Zhi-Hong Bi(#), Li-Jing Xie, Guo-Hua Sun(*), Zhuo Liu, Qing-Qiang Kong, Xian-Xian Wei, Cheng-Meng Chen(*). From starch to carbon materials: insight into the crossing reaction and its influence on the carbonization process. ACS Sustainable Chemistry & Engineering, 2019, 7: 14796-14804.

    https://pubs.acs.org/doi/10.1021/acssuschemeng.9b02821

     

    [10] Aziz Ahmad, Abolhassan Imani, Lij-uan Mao, Rashid Iqbal, Hui Zhang, Zahid Ali Ghazi, Rashid Ahmad, Adnan Ali Khan, Li-Jing Xie, Cheng-Meng Chen(*), Zhong Zhang(*),  Zhi-xiang Wei(*). A bifunctional and free-standing organic composite film with high flexibility and good tensile strength for tribological and electrochemical applications. Advanced Materials Technologies, 2019: 1900617.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900617

     

    [11] Xian-Xian Wei, Bao-yin Cui, Xiao-xiao Wang, Yan-Zhi Cao, Li-Bing Gao, Shao-qing Guo (*), Cheng-Meng Chen(*). Tuning the physico-chemical properties of BiOBr via solvent adjustment: towards an efficient photocatalyst for water treatment. CrystEngComm, 2019, 21: 1750-1757.

    https://pubs.rsc.org/en/content/articlehtml/2019/ce/c8ce02072h

     

     

    [12] Zong-Lin Yi(#), Fang-Yuan Su(#), Guang-Yu Cui, Pei-De Han, Nan Dong(*),  Cheng-Meng Chen(*). Computational insights into the interaction between Li2S/Li2S2 and heteroatom-doped graphene materials, Chemistry Select, 2019, 4: 12612-12621.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201903523

     

    [13] Jing-Peng Chen, Qing-Qiang Kong, Zhuo Liu, Zhi-Hong Bi, Hui Jia, Ge Song, Li-Jing Xie, Shun-Chun Zhang,  Cheng-Meng Chen(*). High yield silicon carbide whiskers from rice husk ash and graphene: growth method and thermodynamics. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19027-19033.

    https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.9b04728

     

     

    [14] Li-Jie Zhang, Xian-Feng Yang, Rong-Sheng Cai, Cheng-Meng Chen, Yan-Zhi Xia, Hua-Wei Zhang, Dong-Jiang Yang, Xiang-Dong Yao. Air cathode of zinc-air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction. Nanoscale, 2019, 11: 826-832.

    https://pubs.rsc.org/en/content/articlehtml/2019/nr/c8nr07386d

     

    [15] Rui-Yi Wang, Zhi-Wei Wu(*), Zhi-Kai Li, Zhang-Feng Qin(*), Cheng-Meng Chen, Zhan-Feng Zheng, Guo-Fu Wang, Wei-Bin Fan, Jian-Guo Wang(*). Synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene over graphene oxide: Probing the active species and relating the catalyst structure to performance. Applied Catalysis A: General., 2019,570:15-22.

    https://www.sciencedirect.com/science/article/pii/S0926860X18305489

     

    [16] Tian-Qi He, Zhen Wang, Xiao-Ming Li, Yong-Tao Tan, Ying Liu, Ling-Bin Kong, Long Kang, Cheng-Meng Chen, Fen Ran(*). Intercalation structure of vanadium nitride nanoparticles growing on graphene surface toward high negative active material for supercapacitor utilization. Journal of Alloys and Compounds, 2019,781:1054-1058.

    https://www.sciencedirect.com/science/article/pii/S0925838818346966

     

    [17] Kashif Javed(*),  Andres Krumme, Mihkel Viirsalu, Illia Krasnou, Tiia Plamus, Viktoria Vassiljeva, Elvira Tarasova, Natalja Savest, Arvo Mere, Valdek Miklia, Mati Danilson, Tiit Kaljuvee, Sven Lange, Qing-Chun Yuan, Paul D.Tophamb, Cheng-Meng Chen. A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning. Carbon, 2019, 140: 148-156.

    https://www.sciencedirect.com/science/article/pii/S000862231830767X

  • 2018+

    [1] Feng Li, Li-Jing Xie, Guo-Hua Sun(*), Fang-Yuan Su, Qing-Qiang Kong, Yu-Fang Cao, Xiang-Yun Guo,  Cheng-Meng Chen(*). Structural evolution of carbon aerogel microspheres by thermal treatment for high-power supercapacitors. Journal of Energy Chemistry, 2018, 27: 439-446.

    https://www.sciencedirect.com/science/article/pii/S2095495617308069

     

    [2] Wei-Ping Ma, Li-Jing Xie, Li-Qin Dai, Guo-Hua Sun(*), Jian-Zhong Chen(*), Fang-Yuan Su, Yu-Fang Cao, Hong Lei, Qing-Qiang Kong,  Cheng-Meng Chen(*). Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochimica Acta, 2018, 266: 420-430.

    https://www.sciencedirect.com/science/article/pii/S001346861830313X

     

    [3] Fang-Yuan Su, Huo Li, Qing-Qiang Kong, Li-Jing Xie, and Cheng-Meng Chen(*). Theoretical study on the quantum capacitance origin of graphene cathodes in lithium ion capacitors. Catalysts, 2018, 8(10): 444.

    https://www.mdpi.com/2073-4344/8/10/444

     

    [4] Yu-Fang Cao, Li-Jing Xie, Guo-Hua Sun, Fang-Yuan Su, Qing-Qiang Kong, Feng Li, Wei-Ping Ma, Jing Shi, Dong Jiang, Chun-Xiang Lu(*), Cheng-Meng Chen(*). Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustainable Energy Fuels, 2018, 2: 455-456.

    https://pubs.rsc.org/en/content/articlehtml/2018/se/c7se00481h

     

    [5] Hui-Fang Zhang, Deng-Ji Xiao, Qian Li, Yuan-Yuan Ma, Shu-Xia Yuan, Li-Jing Xie(*), Cheng-Meng Chen(*),  Chun-Xiang Lu(*). Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. Journal of Energy Chemistry, 2018, 27: 195-202.

    https://www.sciencedirect.com/science/article/pii/S2095495617308586

     

    [6] Yan-Zhen Liu, Yong-Feng Li(*), Shu-Xia Yuan, Shuai Chen, Cong-Wei Wang, Xiao-Ming Li, Fang-Yuan Su, Cheng-Meng Chen(*). Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions. ChemElectroChem, 2018, 5: 3506-3513.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201800937

     

    [7] Qian Li, Chun-Xiang Lu(*), Hui-Fang Zhang, Cheng-Meng Chen(*), Li-Jing Xie(*), Yao-Dong Liu, Shu-Xia Yuan, Qing-Qiang Kong, Ke Zheng, Jun-Qing Yin, Beta-Ni(OH)2 nanosheet arrays grown on biomass-ferived hollow carbon microtubes for high-performance asymmetric supercapacitors. Chemelectrochem, 2018, 5(9):1279-1287.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201800024

     

    [8] Yu Zhou, Xiao-Yu Cui(*), Jian-Hua Weng, Sai-Yan Shi, Hua Han,  Cheng-Meng Chen. Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technology, 2018, 332: 371-380.

    https://www.sciencedirect.com/science/article/pii/S003259101830175X

     

    [9] Deng-Ji Xiao, Chun-Xiang Lu(*), Cheng-Meng Chen,  Shu-Xia Yuan. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Materials, 2018, 10: 216-222.

    https://www.sciencedirect.com/science/article/pii/S2405829717300715

     

    [10] Qian Li, Chun-Xiang Lu(*), Deng-Ji Xiao, Hui-Fang Zhang, Cheng-Meng Chen, Li-Jing Xie(*), Yao-Dong Liu, Shu-Xia Yuan, Qing-Qiang Kong, Ke Zheng, Jun-Qing Yin. β-Ni(OH)2 nanosheet arrays grown on biomass-derived hollow carbon microtubes for high-performance asymmetric supercapacitors. ChemElectroChem, 2018, 5(9): 1279-1287.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201800024

     

    [11] Li-Jun Lei, Zhi-Wei Wu(*), Huan Liu, Zhang-Feng Qin(*), Cheng-Meng Chen, Li Luo, Guo-Fu Wang, Wei-Bin Fan, Jian-Guo Wang(*). A facile method for the synthesis of graphene-like 2D metal oxides and their excellent catalytic application in the hydrogenation of nitroarenes. Journal of Materials Chemistry A, 2018, 6: 9948-9961.

    https://pubs.rsc.org/en/content/articlehtml/2018/ta/c8ta02338g

     

    [12] Yu Gu, Shuai Chen, Jun Ren, Yi Alec Jia, Cheng-Meng Chen, Sridhar Komarneni, Dongjiang Yang(*), Xiang-Dong Yao(*). Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano, 2018, 12: 245-253.

    https://pubs.acs.org/doi/abs/10.1021/acsnano.7b05971

     

    [13] Xian-Yu Chu, Ting Deng, Wei Zhang(*), Dong Wang, Xiao-Fei Liu, Cai Zhang, Ting-Ting Qin, Li-Yun Zhang, Bing-Sen Zhang, Cheng-Meng Chen, Wei-Tao Zheng(*). Architecture of Co-layered double hydroxide nanocages/graphene composite electrode with high electrochemical performance for supercapacitor. Journal of Energy Chemistry, 2018, 27: 507-512.

    https://www.sciencedirect.com/science/article/pii/S2095495617308513

     

    [14] Yi-Hui Zou, Guo-Jing Chang, Shuai Chen, Tong-Chao Liu, Yan-Zhi Xia, Cheng-Meng Chen, Dong-Jiang Yang. Alginate/r-GO assisted synthesis of ultrathin LiFePO4 nanosheets with oriented (010) facet and ultralow antisite defect. Chemical Engineering Journal, 2018, 351: 340-347.

    https://www.sciencedirect.com/science/article/pii/S1385894718311422

  • 2017+

    [1] Feng Li, Li-Jing Xie, Guo-Hua Sun(*), Qing-Qiang Kong, Fang-Yuan Su, Hong Lei, Xiang-Yun Guo, Bing-Sen Zhang, Cheng-Meng Chen(*). Regulating pore structure of carbon aerogels by graphene oxide as ‘shape-directing’ agent. Microporous and Mesoporous Materials, 2017, 240: 145-148.

    https://www.sciencedirect.com/science/article/pii/S138718111630508X

     

    [2] Feng Li, Li-Jing Xie, Guo-Hua Sun(*), Fang-Yuan Su, Qing-Qiang Kong, Qian Li, Yu-Guang Chao, Xiang-Yun Guo, Cheng-Meng Chen(*). Boosting the specific surface area of hierarchical porous carbon aerogel by multiple roles of the catalyst towards high performance super-capacitors. ChemElectroChem, 2017, 4(12): 3119-3125.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201700880

     

    [3] Cheng-Jie Hua, Xiao-Ming Li, Li-Juan Shen, Hong Lei, Xiao-Qian Guo, Zhuo Liu, Qing-Qiang Kong, Li-Jing Xie,  Cheng-Meng Chen(*). Influence of co-solvent hydroxyl group number on properties of water-based conductive carbon pastes. Particuology, 2017, 33: 35-41.

    https://www.sciencedirect.com/science/article/pii/S1674200117300421

     

    [4] Fang-Yuan Su, Li-Qin Dai, Xiao-Qian Guo, Li-Jing Xie, Guo-Hua Sun,  Cheng-Meng Chen(*). Micro-structure evolution and control of lithium-ion battery electrode laminate. Journal of Energy Storage, 2017, 14: 82-93.

    https://www.sciencedirect.com/science/article/pii/S2352152X17302542

     

    [5] Ning-Jing Song, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Can-Liang Ma, Qing-Qiang Kong. Effect of annealing temperature on the mechanical properties of flexible graphene films. New Carbon Materials, 2017, 32(3): 221-226.

    https://www.sciencedirect.com/science/article/pii/S1872580517601197

     

    [6] Qian Li, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Li-Jing Xie(*), Yao-Dong Liu(*), Ying Li, Qing-Qiang Kong,  Hui Wang. NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Storage Mater, 2017, 8: 59-67.

    https://www.sciencedirect.com/science/article/pii/S2405829716303567

     

    [7] Qian Li, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Li-Jing Xie, Shu-Xia Yuan. Hydrothermal synthesis of Ni(OH)2/RGO nanocomposites with superior electrochemical performance. New Carbon Materials, 2017, 32(6): 527-534.

    http://manu60.magtech.com.cn/xxtcl/CN/article/searchArticle.do

     

    [8] Yong Zhang, Guo-Xin Zhang, Wan-Xi Li, Xiao-Ming Li, Katsumi Uchiyama, Cheng-Meng Chen(*). Enhancing oxygen reduction activity by exposing (111) facets of CoFe2O4 octahedron on graphene. Chemistry Select, 2017, 2:9878-9881.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201701892

     

    [9] Yong-Feng Li, Yan-Zhen Liu(*), Yu Liang, Xiao-Hui Guo, Cheng-Meng Chen(*). Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors. Applied Physics A: Materials Sciences & Processing, 2017, 123(9): 566.

    https://.springer.com/article/10.1007/s00339-017-1178-9

     

     

    [10] Chen Jiao, Wei-Ke Zhang(*), Fang-Yuan Su(*), Hong-Yan Yang, Rui-Xiang Liu, Cheng-Meng Chen. Research progress on electrode materials and electrolytes for supercapacitors. New Carbon Materials, 2017, 32(2): 106-115.

    http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTCL201702002.htm

     

    [11] Shan-Hui Zhu(*), You-Liang Cen, Miao Yang, Jing Guo, Cheng-Meng Chen, Jian-Guo Wang, Wei-Bin Fan(*). Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation. Applied Catalysis B: Environment, 2017, 211: 89-97.

    https://www.sciencedirect.com/science/article/pii/S0926337317303399

     

    [12] Deng-Ji Xiao, Hui-Fang Zhang, Cheng-Meng Chen, Yao-Dong Liu, Shu-Xia Yuan, and Chun-Xiang Lu(*). Interwoven NiCo2O4 nanosheet/carbon-nanotube composites as highly efficient lithium-sulfur cathode hosts. ChemElectroChem, 2017, 4(11): 2959-2965.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201700643

     

    [13] Deng-Ji Xiao, Qian Li, Hui-Fang Zhang, Yuan-Yuan Ma, Chun-Xiang Lu(*), Cheng-Meng Chen, Yao-Dong Liu,  Shu-Xia Yuan. A sulfur host d on cobalt–graphitic carbon nanocages for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5: 24901-24908.

    https://pubs.rsc.org/en/content/articlehtml/2017/ta/c7ta08483h

     

    [14] Yu-Xue Wei, Rui-Min Ding, Cheng-Hua Zhang(*), Bao-Liang Lv, Yi Wang, Cheng-Meng Chen, Xiao-Ping Wang, Jian Xu, Yong Yang,  Yong-Wang Li(*).Facile synthesis of self-assembled ultrathin α-Fe(OH)2 nanorod/graphene oxide composites for supercapacitors. Journal of Colloid and Interface Science, 2017, 504: 593-602.

    https://www.sciencedirect.com/science/article/pii/S0021979717306483

     

    [15] Xiao-Dong Tian, Xiao Li, Tao Yang, Kai Wang, Hong-Bao Wang, Yan Song(*), Zhan-Jun Liu, Quan-Gui Guo, Cheng-Meng Chen. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor. Electrochimica Acta, 2017, 247: 1060-1071.

    https://www.sciencedirect.com/science/article/pii/S0013468617315219

     

    [16] Ya-Nan Su, Shou-Chun Zhang, Xing-Hua Zhang, Zhen-Bo Zhao, Cheng-Meng Chen, and De-Qi Jing(*). Preparation and properties of graphene/carbon fiber/poly(ether ether ketone) composites. New Carbon Materials, 2017, 32(2): 152-159.

    http://www.researchgate.net/publication/317757862

     

    [17] Xiao-Yuan Shi, Ting Deng, Bing-Sen Zhang, Wei Zhang(*), Lu Sui, He Yang, Dong Wang, Wen Shi, Cheng-Meng Chen, Wei-Tao Zheng(*). Accessible 3D integrative paper electrode shapes: all-carbon dual-ion batteries with optimum packaging performances. ChemElectroChem, 2017, 4(12): 3238-3243.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201700752

     

    [18] Mo Qiao, Cheng Tang, Liviu Cristian Tanase, Cristian Mihail Teodorescu, Cheng-Meng Chen, Qiang Zhang, Maria-Magdalena Titirici(*). Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. Materials Horizons, 2017, 4: 895-899.

    https://pubs.rsc.org/en/content/articlehtml/2017/mh/c7mh00298j

     

    [19] Yi-Ming Niu, Bing-Sen Zhang(*), Jing-Jie Luo, Li-Yun Zhang, Cheng-Meng Chen, Dang-Sheng Su(*). Correlation between microstructure evolution of a well-eefined cubic palladium catalyst and selectivity during acetylene hydrogenation. ChemCatChem, 2017, 9: 3435-3439.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201700020

     

    [20] Ren-Hou Liu, Feng Li, Cheng-Meng Chen, Quan-Bin Song, Ning Zhao(*), Fu-Kui Xiao(*). Nitrogen-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for polyaromatic hydrocarbon hydrogenation. Catalysis Science & Terchnology, 2017, 7: 1217-1226.

    https://pubs.rsc.org/en/content/articlehtml/2017/cy/c7cy00058h

     

    [21] Xiao Li, Yan Song(*), Xiao-Dong Tian, Kai Wang, Quan-Gui Guo, Lang Liu, Cheng-Meng Chen. Preparation and electrochemical properties of NaF-Si-C-RGO hybrids. New Carbon Materials, 2017, 32(4): 304-310.

    http://www.cnki.com.cn/Article/CJFDTotal-XTCL201704003.htm

     

    [22] Li-Jun Lei, Zhi-Wei Wu, Rui-Yi Wang, Zhang-Feng Qin, Cheng-Meng Chen, Ye-Qun Liu, Guo-Fu Wang, Wei-Bin Fan, Jian-Guo Wang.Controllable decoration of palladium sub-nanoclusters on reduced graphene oxide with superior catalytic performance in selective oxidation of alcohols. Catalysis Science & Technology, 2017, 23(7): 5650-5661.

    https://pubs.rsc.org/en/content/articlelanding/2017/cy/c7cy01732d

     

    [23] Qing-Qing Gu, Guo-Dong Wen, Yu-Xiao Ding, Kuang-Hsu Wu, Cheng-Meng Chen, and Dang-Sheng Su. Reduced graphene oxide: a metal-free catalyst for aerobic oxidative desulfurization. Green Chemistry, 2017, 19: 1175-1181.

    https://pubs.rsc.org/en/content/articlehtml/2017/gc/c6gc02894b

     

    [24] Hui-Fang Zhang, Chun-Xiang Lu(*), Cheng-Meng Chen, Li-Jing Xie, Pu-Cha Zhou, Qing-Qiang Kong. 2D layered α-Fe2O3/rGO flexible electrode by facile colloidal electrostatic self-assembly. ChemElectroChem, 2017, 4: 1990-1996.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201700253

  • 2016+

    [1] Li-Jing Xie, Guo-Hua Sun, Fang-Yuan Su, Xiao-Qian Guo, Qing-Qiang Kong, Xiao-Ming Li, Xianhong Huang, Liu Wan, Wen Song, Kai-Xi Li, Chun-Xiang Lv, Cheng-Meng Chen(*). Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. Journal of Materials Chemistry A, 2016, 4: 1637-1646.

    https://pubs.rsc.org/en/content/articlehtml/2015/ta/c5ta09043a

     

    [2] Yi-Dan Gao, Qing-Qiang Kong, Zhuo Liu, Xiao-Ming Li, Cheng-Meng Chen(*), Rong Cai. Graphene oxide aerogels constructed using large or small graphene oxide with different electrical, mechanical and adsorbent properties. RSC Advances, 2016, 6: 9851-9856.

    https://pubs.rsc.org/en/content/articlehtml/2016/ra/c5ra26922a

     

    [3] Yi-Dan Gao, Yao-Yao Zhang, Yong Zhang, Li-Jing Xie, Xiao-Ming Li, Fang-Yuan Su, Xian-Xian Wei, Zhi-Wei Xu(*), Cheng-Meng Chen(*), Rong Cai. Three-dimensional paper-like graphene work with highly orientated laminar structure as binder-free supercapacitor electrode. Journal of Energy Chemistry, 2016, 25(1): 49-54.

    https://www.sciencedirect.com/science/article/pii/S2095495615001291

     

    [4]Qian Li, Qiang Wei, Li-Jing Xie(*), Cheng-Meng Chen(*), Chun-Xiang Lu(*), Fang-Yuan Su, and Pu-Cha Zhou. Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode. RSC Advances., 2016, 6: 46548-46557.

    https://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra04998b

     

    [5] Hong Lei, Zhuo Liu, Chong He, Shou-Chun Zhang, Ye-Qun Liu, Cheng-Jie Hua, Xiao-Ming Li, Feng Li, Cheng-Meng Chen(*),  Rong Cai. Graphene enhanced low-density polyethylene by pretreatment and melt compounding. RSC Advances, 2016, 6: 101492-101500.

    https://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra15702e

     

    [6] Yan-Zhen Liu, Yong-Feng Li(*), Fang-Yuan Su, Li-Jing Xie, Qing-Qiang Kong, Xiao-Ming Li, Jian-Guo Gao, Cheng-Meng Chen(*). Easy one-step synthesis of N-doped graphene for supercapacitors. Energy Storage Materials, 2016, 2: 69-75.

    https://www.sciencedirect.com/science/article/pii/S2405829715300295

     

    [7] Yun-Xiao Tong, Xiao-Ming Li, Li-Jing Xie, Fang-Yuan Su(*), Jing-Ping Li, Guo-Hua Sun, Yi-Dan Gao, Nian Zhang, Qiang Wei, Cheng-Meng Chen(*). Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor. Energy Storage Materials, 2016, 3: 140-148.

    https://www.sciencedirect.com/science/article/pii/S2405829715300702

     

    [8] Ning-Jing Song, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Can-Laing Ma, Qiang-Qiang Kong, Zhuo Liu, Xian-Xian Wei, Yong-Hong Li. Free standing graphene/SiC films by in-situ carbothermal reaction as thermal shielding materials. Materials and Design, 2016, 109: 227-232.

    https://www.sciencedirect.com/science/article/pii/S0264127516309030

     

    [9] Guo-Hua Sun, Fang-Yuan Su, Xiao-Qian Guo, Cheng-Meng Chen(*). Synthesis of mesoporous carbon aerogels d on metal-containing ionic liquid and its application for electrochemical capacitors. J Solid State Electrochem., 2016, 20: 1813-1817.

    https://.springer.com/article/10.1007/s10008-016-3170-2

     

    [10] Fang-Yuan Su, Li-Jing Xie, Guo-Hua Sun, Qing-Qiang Kong, Xiao-Ming Li, Zhuo Liu, Cheng-Meng Chen(*). Theoretical research progress on the use of graphene in different electrochemical processes. New Carbon Materials, 2016, 31: 363-377.

    http://manu60.magtech.com.cn/xxtcl/EN/article/searchArticle.do

     

    [11] Li-Jing Xie, Guo-Hua Sun, Long-Fei Xie, Xiao-Ming Li, Zhuo Liu, Qing-Qiang Kong, Chun-Xiang Lu, Kai-Xi Li(*),  Cheng-Meng Chen(*). A high energy density asymmetric supercapacitor d on a CoNi-layered double hydroxide and activated carbon. New Carbon Materials, 2016, 31(1): 37-45.

    http://manu60.magtech.com.cn/xxtcl/EN/article/searchArticle.do

     

    [12] Chen-Yu Chen, Cheng Tang, Hao-Fan Wang, Cheng-Meng Chen(*), Xiao-Yuan Zhang(*), Xia Huang,  Qiang Zhang(*). Oxygen reduction reaction on graphene in an electro-fenton system: in situ generation of H2O2 for the oxidation of organic compounds. ChemSusChem, 2016, 9(10): 1194-1199.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201600030

     

     

    [13] Xiao Li, Xiao-Dong Tian, Ning Zhao, Kai Wang, Yan Song(*), Quan-Gui Guo, Cheng-Meng Chen, Lang Liu.A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries. New Journal of Chemistry, 2016, 40(10): 8961-8968.

    https://pubs.rsc.org/en/content/articlehtml/2016/nj/c6nj01042c

     

    [14] Yu-Zuo Wang, Xu-Yi Shan, Da-Wei Wang(*), Cheng-Meng Chen, Feng Li(*), Hui-Ming Cheng. Electrochemical stability of graphene cathode for high-voltage lithium ion capacitors. Asia-Pacific Journal of Chemical Engineering, 2016, 11(3): 407-414.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.2001

     

    [15 Ting-Zhou Zhuang, Jia-Qi Huang(*), Hong-Jie Peng, Lian-Yuan He, Xin-Bing Cheng, Cheng-Meng Chen, Qiang Zhang(*). Rational integration of polypropylene/graphene oxide/nafion as ternary-ed separator to retard the shuttle of polysulfides for lithium–sulfur batteries. Small, 2016, 12(3): 381-389.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201503133

     

    [16] Xi-Lin She, Qian-Qian Li, Na Ma, Jin Sun, Deng-Wei Jing, Cheng-Meng Chen, Li-Jun Yang, and Dong-Jiang Yang. Creation of Ge?Nx?Cycon?gures in carbon nanotubes: origin of Enhanced electrocatalytic performance for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2016, 8: 10383-10391.

    https://pubs.acs.org/doi/abs/10.1021/acsami.6b03260

     

    [17] Bing-Sen Zhang(*), Yi-Ming Niu, Jun-Juan Xu, Xiao-Li Pan, Cheng-Meng Chen, Wen Shi, Marc-Georg Willinger, Robert Schlogl, Dang-Sheng Su(*). Tuning the surface structure of supported PtNixbillic electrocatalysts for the methanol electro-oxidation reaction. Chemical Communications, 2016, 52(50): 3927.

    https://pubs.rsc.org/en/content/articlehtml/2016/cc/c5cc08978f

     

    [18] Long Liu, Xian-Feng Yang, Na Ma, Hai-Tao Liu, Yan-Zhi Xia, Cheng-Meng Chen, Dong-Jiang Yang(*), Xiang-Dong Yao(*). Scalable and cost-effective synthesis of highly ef?cient Fe2N-d oxygen reduction catalyst derived from seaweed biomass. Small, 2016, 12(10): 1295-1301.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201503305

     

    [19] Chang-Yong Zhang, Peng Liang, Xu-Fei Yang, Yong Jiang, Yan-Hong Bian, Cheng-Meng Chen, Xiao-Yuan Zhang,  Xia Huang. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosensors and Bioelectronics, 2016, 81: 32–38.

    https://www.sciencedirect.com/science/article/pii/S0956566316301580

     

    [20] Guang-Qiang Lv, Hong-Liang Wang, Yong-Xing Yang, Xiao Li, Tian-Sheng Deng, Cheng-Meng Chen, Yu-Lei Zhu, Xiang-Lin Hou(*). Aerobic selective oxidation of 5- hydroxymethyl-furfural over nitrogen-doped graphene materials with 2,2,6,6- tetramethylpiperidin- oxyl as co-catalyst. Catalysis Science & Technology, 2016, 6, 2377-2386.

    https://pubs.rsc.org/en/content/articlehtml/2016/cy/c5cy01149c

     

    [21] Jia-Le Shi, Hao-Fan Wang, Xiao-Lin Zhu, Cheng-Meng Chen, Xing Huang, Xiao-Dong Zhang, Bo-Quan Li, Cheng Tang,  Qiang Zhang(*). The nanostructure preservation of 3D porous graphene: New insights into the graphitization and surface chemistry of non-stacked double-templated graphene after high-temperature treatment. Carbon, 2016, 103: 36-44.

    https://www.sciencedirect.com/science/article/pii/S0008622316301919

     

    [22] Zhe Yuan, Hong-Jie Peng, Ting-Zheng Hou, Jia-Qi Huang, Cheng-Meng Chen, Da-Wei Wang, Xin-Bing Cheng, Fei Wei, Qiang Zhang(*). Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Letters, 2016, 16(1): 519-527.

    https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b04166

     

    [23] Rui-Yi Wang, Zhi-Wei Wu, Zhang-Feng Qin(*), Cheng-Meng Chen, Hua-Qing Zhu, Jian-Bing Wu, Gang Chen, Wei-Bin Fan, Jian-Guo Wang(*). Graphene oxide: an effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene. Catalysis Science & Technology, 2016, 6: 993-997.

    https://pubs.rsc.org/en/content/articlehtml/2016/cy/c5cy01854d

     

    [24] Guang-Qiang Lv, Hong-Liang Wang, Yong-Xing Yang, Tian-Sheng Deng, Cheng-Meng Chen, Yu-Lei Zhu, Xiang-Lin Hou(*). Direct synthesis of 2,5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst. Green Chemistry, 2016, 18: 2302-2307.

    https://pubs.rsc.org/en/content/articlehtml/2016/gc/c5gc02794b

     

    [25] Chun-Song Zhao, Xi Luo, Cheng-Meng Chen, Hui Wu(*). Sandwich electrode designed for high performance lithium-ion battery. Nanoscale, 2016, 8: 9511-9516.

    https://pubs.rsc.org/en/content/articlehtml/2016/nr/c5nr09049k

     

    [26] Long Liu, Xian-Feng Yang, Chun-Xiao Lv, Ai-Mei Zhu, Xiao-Yi Zhu, Shao-Jun Guo(*), Cheng-Meng Chen,  Dong-Jiang Yang. Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Applied Materials & Interfaces, 2016, 8: 7047?7053.

    https://pubs.acs.org/doi/abs/10.1021/acsami.5b12427

     

    [27] Rui Tang, Qin-Bai Yun, Wei Lv, Yan-Bing He(*), Cong-Hui You, Fang-Yuan Su, Lei Ke, Bao-Hua Li, Fei-Yu Kang,  Quan-Hong Yang(*). How a very trace amount of graphene additive works for constructing an ef?cient conductive network in LiCoO2-based lithium-ion batteries. Carbon, 2016, 103: 356-362.

    https://www.sciencedirect.com/science/article/pii/S0008622316302214

  • 2015+

    [1] Li-Jing Xie, Fang-Yuan Su, Long-Fei Xie, Xiao-Ming Li, Zhuo Liu, Qing-Qiang Kong, Xiao-Hui Guo, Yao-Yao Zhang, Liu Wan, Kai-Xi Li, Chun-Xiang Lv, Cheng-Meng Chen(*). Self-assembled 3D graphene-d aerogel with Co3Onanoparticles as high-performance asymmetric supercapacitor electrode. Chemsuschem, 2015, 8(17): 2917-2926.

    https://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201500355

     

    [2] Zhuo Liu, Qing-Qiang Kong, Cheng-Meng Chen(*),Qiang Zhang, Ling Hu, Xiao-Ming Li, Pei-De Han, Rong Cai. From two-dimensional to one-dimensional structures: SiC nano-whiskers derived from graphene via a catalyst-free carbothermal reaction. RSC Advances, 2015, 5(8): 5946-5950.

    https://pubs.rsc.org/en/content/articlehtml/2014/ra/c4ra11380b

     

    [3] Yong-Feng Li, Yan-Zhen Liu(*), Wei-Ke Zhang, Chun-Yao Guo, Cheng-Meng Chen(*). Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors. Materials Letters, 2015, 157: 273-276.

    https://www.sciencedirect.com/science/article/pii/S0167577X15300240

     

     

    [4] Yoshitaka Saito(*), Xi Luo, Chun-Song Zhao, Wei Pan, Cheng-Meng Chen, Jiang-Hong Gong, Hidetoshi Matsumoto, Jie Yao, Hui Wu. Filling the gaps between graphene oxide: a general strategy toward nanoed oxides. Advanced Functional Materials, 2015, 25(35): 5683-5690.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201501358

     

    [5] Chun-Song Zhao, Hong-Peng Gao, Cheng-Meng Chen, Hui Wu(*). Reduction of graphene oxide in Li-ion batteries. Journal of Materials Chemistry A, 2015, 3(36): 18360-18364.

    https://pubs.rsc.org/en/content/articlehtml/2015/ta/c5ta05068e

     

    [6] Jia-Qi Huang(*), Ting-Zhou Zhuang, Qiang Zhang(*), Hong-Jie Peng, Cheng-Meng Chen,  Fei Wei. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS Nano, 2015, 9(3): 3002-3011.

    https://pubs.acs.org/doi/abs/10.1021/nn507178a

     

    [7] Guang-Qiang Lv, Hong-Liang Wang, Yong-Xing Yang, Tian-Sheng Deng, Cheng-Meng Chen, Yu-Lei Zhu, Xiang-Lin Hou(*). Graphene oxide: a convenient l-free carbocatalyst for facilitating aerobic oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran. ACS Catalysis, 2015, 5(9): 5636-5646.

    https://pubs.acs.org/doi/abs/10.1021/acscatal.5b01446

     

    [8] Hong-LiangWang, Yin-Xiong Wang, Tian-Sheng Deng, Cheng-Meng Chen, Yu-Lei Zhu, Xiang-Lin Hou(*). Carbocatalyst in biorefinery: Selective etherification of 5- hydroxymethylfurfural to 5,5'(oxy-bis(methylene)bis-2-furfural over graphene oxide. Catalysis Communications, 2015, 59: 127-130.

    https://www.sciencedirect.com/science/article/pii/S1566736714004282

     

    [9] Lin Zhu, Hong-Jie Peng, Ji-Yuan Liang, Jia-Qi Huang(*), Cheng-Meng Chen, Xue-Feng Guo, Wan-Cheng Zhu(*), Peng Li, Qiang Zhang(*). Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries. Nano Energy, 2015, 11: 746-755.

    https://www.sciencedirect.com/science/article/pii/S2211285514002699

     

    [10] Rui-Yi Wang, Zhi-Wei Wu, Guo-Fu Wang, Zhang-Feng Qin(*),Cheng-Meng Chen, Mei Dong, Hua-Qing Zhu, Wei-Bin Fan, Jian-Guo Wang. Highly active Au-Pd nanoparticles supported on three-dimensional graphene-carbon nanotube hybrid for selective oxidation of methanol to methyl formate. RSC Advances, 2015, 5(56): 44835-44839.

    https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra06025g

     

    [11] Gui-Li Tian, Qiang Zhang(*), Meng-Qiang Zhao, Hao-Fan Wang, Cheng-Meng Chen, Fei Wei. Fluidized-bed CVD of unstacked double- templated graphene and its application in supercapacitors. AICHE Journal, 2015, 61(3): 747-755.

    https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.14710

     

    [12] Ying Liu, Cheng-Meng Chen, Li-Yan Liu, Guo-Rui Zhu, Qing-Qiang Kong, Ran-Xing Hao, Wei Tan(*). Rheological behavior of high concentrated dispersions of graphite oxide. Soft Materials, 2015, 13(3): 167-175.

    https://www.tandfonline.com/doi/abs/10.1080/1539445X.2015.1055004

  • 2014+

    [1] Qing-Qiang Kong, Zhuo Liu, Jian-Guo Gao, Cheng-Meng Chen(*), Qiang Zhang, Guang-Min Zhou, Ze-Chao Tao, Xing-Hua Zhang, Mao-Zhang Wang, Feng Li, Rong Cai. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Advanced Functional Materials, 2014, 24(27): 4222-4228.

    https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201304144

     

    [2] Yan-Zhen Liu, Cheng-Meng Chen(*), Yong-Feng Li(*), Xiao-Ming Li, Qing-Qiang Kong, Mao-Zhang Wang. Crumpled reduced graphene oxide by flame-induced reduction of graphite oxide for supercapacitive energy storage. Journal of Materials Chemistry A, 2014, 2(16): 5730-5737.

    https://pubs.rsc.org/en/content/articlehtml/2014/ta/c3ta15082h

     

    [3] Ning-Jing Song, Chun-Xiang Lu(*), Cheng-Meng Chen(*), Zhuo Liu, Qing-Qiang Kong, Rong Cai. Thermally reduced graphene oxide films as flexible lateral heat spreaders. Journal of Materials Chemistry A, 2014, 2(39): 16563-16568.

    https://pubs.rsc.org/en/content/articlehtml/2014/ta/c4ta02693d

     

     

    [3] Shan-Hui Zhu(*), Cheng-Meng Chen, Yan-Feng Xue, Jian-Bing Wu, Jian-Guo Wang, Wei-Bin Fan(*). Graphene oxide: an efficient acid catalyst for alcoholysis and esterification reactions. ChemCatChem, 2014, 6(11): 3080-3083.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201402574

     

    [4] Xian-Xian Wei, Cheng-Meng Chen, Shao-Qing Guo, Fang Guo, Xiao-Ming Li, Xiao-Xiao Wang, Hai-Tao Cui, Liang-Fu Zhao(*), Wen Li. Advanced visible-light-driven photocatalyst BiOBr-TiO2-graphene composite with graphene as a nano-filler. Journal of Materials Chemistry A, 2014, 2(13): 4667-4675.

    https://pubs.rsc.org/en/content/articlehtml/2014/ta/c3ta14349j

     

    [5] Xiao-Chen Zhao, Jia Wang, Cheng-Meng Chen, Yan-Qiang Huang, Ai-Qin Wang(*), Tao Zhang. Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst? Chemical Communications, 2014, 50(26): 3439-3442.

    https://pubs.rsc.org/en/content/articlehtml/2014/cc/c3cc49634a

     

    [6] Hong-Liang Wang, Qing-Qiang Kong, Ying-Xiong Wang, Tian-Sheng Deng, Cheng-Meng Chen, Xiang-Lin Hou (*),  Yu-Lei Zhu (*). Graphene oxide catalyzed dehydration of fructose into 5-Hydroxymethylfurfural with isopropanol as cosolvent. ChemCatChem, 2014, 6(3): 728-732。

    https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201301067

     

    [7] Kashif Javed, C. M. A.Galib, Fan Yang, Cheng-Meng Chen, and Chao-Xia Wang (*). A new approach to fabricate graphene electro-conductive networks on natural fibers by ultraviolet curing method. Synthetic ls, 2014, 193: 41-47.

    https://www.sciencedirect.com/science/article/pii/S0379677914001106

     

    [8] Shao-Jun Qing, Xiao-Ning Hou, Ya-Jie Liu, Hong-Juan Xi, Xiang Wang, Cheng-Meng Chen, Zhi-Wei Wu,  Zhi-Xian Gao(*). A novel supported Cu catalyst with highly dispersed copper nanoparticles and its remarkable catalytic performance in methanol decomposition. RSC Advances, 2014, 4(94): 52008-52011.

    https://pubs.rsc.org/en/content/articlehtml/2014/ra/c4ra10101d

     

    [9] Wen-Zhao Gong, Cheng-Meng Chen, Jian-Guo Gao, Qing-Qiang Kong, Mang-Guo Yang, Mao-Zhang Wang, Lang Liu, Yong-Gang Yang(*). Preparation of a Ni/graphene nanocomposite by an electroless plating method. New Carbon Materials, 2014, 29(6): 432-437.

    https://www.sciencedirect.com/science/article/pii/S0008622314012366

     

    [10]李永锋,刘燕珍,龚文照,焦蓬,陈成猛,杨永岗,王茂章,王刚.改性石墨烯对酚醛树脂结构和热解性能的影响.炭素技术, 2014, 04: 5-9+19.

    http://www.cnki.com.cn/Article/CJFDTotal-TSJS201404003.htm

     

    [11]徐岗领,陈成猛,孔庆强,杨永岗,王茂章(*).石墨烯泡沫的制备及柔性储能应用研究.化工新型材料, 2014, 02: 155-158.

    http://www.cnki.com.cn/Article/CJFDTotal-HGXC201402055.htm


  • 2013+

    [1] Qing-Qiang Kong, Cheng-Meng Chen(*), Qiang Zhang, Xing-Hua Zhang, Mao-Zhang Wang,  Rong Cai. Small particles of chemically-reduced graphene with improved electrochemical capacity. Journal of Physical Chemistry C, 2013, 117(30): 15496-15504.

    https://pubs.acs.org/doi/abs/10.1021/jp403497u

     

    [2] Sheng-Yun Huang, Gang-Ping Wu(*), Cheng-Meng Chen, Yu Yang, Shou-Chun Zhang,  Chun-Xiang Lu(*). Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces. Carbon, 2013, 52: 613-616.

    https://www.sciencedirect.com/science/article/pii/S0008622312008135

     

    [3] Xiao-Ning Guo, Xi-Li Tong, Yun-Wei Wang, Cheng-Meng Chen, Guo-Qiang Jin, Xiang-Yun Guo(*). High photoelectrocatalytic performance of a MoS2-SiC hybrid structure for hydrogen evolution reaction, Journal of Materials Chemistry A, 2013, 1(15): 4657-4661.

    https://pubs.rsc.org/en/content/articlehtml/2013/ta/c3ta10600d

     

    [4] Sheng-Yun Huang, Gang-Ping Wu, Cheng-Meng Chen, Yu Yang, Shou-Chun Zhang,  Chun-Xiag Lu. Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces. Carbon, 2013, 52: 605-620.

    https://www.sciencedirect.com/science/article/pii/S0008622312008135

     

    [5] Xiao-Chen Zhao, Qiang Zhang, Bing-Sen Zhang, Cheng-Meng Chen, Jin-Ming Xu, Ai-Qin Wang, Dang-Sheng Su(*),  Tao Zhang(*). Decorated resol derived mesoporous carbon: highly ordered microstructure, rich boron incorporation, and excellent electrochemical capacitance. RSC Advances, 2013, 3(11): 3578-3584.

    https://pubs.rsc.org/en/content/articlehtml/2012/ra/c2ra22912a

     

    [6] Rui-Yi Wang, Zhi-Wei Wu, Cheng-Meng Chen, Zhang-Feng Qin(*), Hua-Qing Zhu, Guo-Fu Wang, Hao Wang, Cheng-Ming Wu, Wei-Wen Dong, Wei-Bin Fan, and Jian-Guo Wang(*). Graphene-supported Au-Pd billic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate. Chemical Communications, 2013, 49(74): 8250-8252.

    https://pubs.rsc.org/en/content/articlehtml/2013/cc/c3cc43948h

     

    [7] Jia-Qi Huang, Xiao-Fei Liu, Qiang Zhang(*), Cheng-Meng Chen, Meng-Qiang Zhao, Shu-Mao Zhang, Wan-Cheng Zhu, Wei-Zhong Qian, Fei Wei. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from-40 to 60 degrees C. Nano Energy, 2013, 2(2): 314-321.

    https://www.sciencedirect.com/science/article/pii/S2211285512002054

     

    [8] Li-Jing Xie, Jun-Feng Wu, Cheng-Meng Chen, Chang-Ming Zhang, Liu Wan, Jian-Long Wang, Qing-Qiang Kong, Chun-Xiang Lv, Kai-Xi Li(*),  Guo-Hua Sun. A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode. Journal of Power Sources, 2013, 242: 148-156.

    https://www.sciencedirect.com/science/article/pii/S0378775313008719

12下一页»尾页

联系我们


销售经理:18835170493(刘经理)

                18835170493@163.com

                微信号:18835170493

技术支持:13934640625(郭老师)

                guoxq#sxicc.ac.cn(发邮件时替换#为@)

                微信号:13934640625


电话/传真:0351-4049061

地   址:山西省太原市迎泽区桃园南路27号

邮   编:030001

网   址:http://709.sxicc.ac.cn

0351-4049061

版权所有:中国科学院山西煤炭化学研究所(ICC-CAS)
备案号:晋备ICP备1000255478号-3